SentenceTransformer based on ymelka/camembert-cosmetic-finetuned
This is a sentence-transformers model finetuned from ymelka/camembert-cosmetic-finetuned on the PhilipMay/stsb_multi_mt dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: ymelka/camembert-cosmetic-finetuned
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Languages: de, en, es, fr, it, nl, pl, pt, ru, zh
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: CamembertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ymelka/camembert-cosmetic-similarity")
# Run inference
sentences = [
'Un homme joue de la guitare.',
'Un homme est en train de manger une banane.',
'Un homme joue de la flûte.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
stsb-fr-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6401 |
spearman_cosine | 0.6662 |
pearson_manhattan | 0.7077 |
spearman_manhattan | 0.7104 |
pearson_euclidean | 0.6183 |
spearman_euclidean | 0.6339 |
pearson_dot | 0.1861 |
spearman_dot | 0.2168 |
pearson_max | 0.7077 |
spearman_max | 0.7104 |
Semantic Similarity
- Dataset:
stsb-fr-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8344 |
spearman_cosine | 0.8565 |
pearson_manhattan | 0.8519 |
spearman_manhattan | 0.8542 |
pearson_euclidean | 0.8541 |
spearman_euclidean | 0.8555 |
pearson_dot | 0.499 |
spearman_dot | 0.5094 |
pearson_max | 0.8541 |
spearman_max | 0.8565 |
Semantic Similarity
- Dataset:
stsb-fr-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.798 |
spearman_cosine | 0.8219 |
pearson_manhattan | 0.8238 |
spearman_manhattan | 0.8221 |
pearson_euclidean | 0.823 |
spearman_euclidean | 0.8218 |
pearson_dot | 0.4089 |
spearman_dot | 0.4589 |
pearson_max | 0.8238 |
spearman_max | 0.8221 |
Training Details
Training Dataset
PhilipMay/stsb_multi_mt
- Dataset: PhilipMay/stsb_multi_mt at 3acaa3d
- Size: 5,749 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 11.1 tokens
- max: 30 tokens
- min: 6 tokens
- mean: 11.04 tokens
- max: 26 tokens
- min: 0.0
- mean: 2.7
- max: 5.0
- Samples:
sentence1 sentence2 score Un avion est en train de décoller.
Un avion est en train de décoller.
5.0
Un homme joue d'une grande flûte.
Un homme joue de la flûte.
3.799999952316284
Un homme étale du fromage râpé sur une pizza.
Un homme étale du fromage râpé sur une pizza non cuite.
3.799999952316284
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Dataset
PhilipMay/stsb_multi_mt
- Dataset: PhilipMay/stsb_multi_mt at 3acaa3d
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 17.45 tokens
- max: 52 tokens
- min: 6 tokens
- mean: 17.35 tokens
- max: 48 tokens
- min: 0.0
- mean: 2.36
- max: 5.0
- Samples:
sentence1 sentence2 score Un homme avec un casque de sécurité est en train de danser.
Un homme portant un casque de sécurité est en train de danser.
5.0
Un jeune enfant monte à cheval.
Un enfant monte à cheval.
4.75
Un homme donne une souris à un serpent.
L'homme donne une souris au serpent.
5.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05weight_decay
: 0.01warmup_ratio
: 0.1bf16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | stsb-fr-dev_spearman_cosine | stsb-fr-test_spearman_cosine |
---|---|---|---|---|---|
0 | 0 | - | - | 0.6661 | - |
0.2778 | 100 | 4.9452 | 4.4417 | 0.7733 | - |
0.5556 | 200 | 4.667 | 4.4273 | 0.7986 | - |
0.8333 | 300 | 4.4904 | 4.3058 | 0.8338 | - |
1.1111 | 400 | 4.1679 | 4.2723 | 0.8491 | - |
1.3889 | 500 | 4.138 | 4.3575 | 0.8464 | - |
1.6667 | 600 | 4.5737 | 4.3427 | 0.8479 | - |
1.9444 | 700 | 4.3086 | 4.4455 | 0.8510 | - |
2.2222 | 800 | 3.8711 | 4.4135 | 0.8590 | - |
2.5 | 900 | 4.064 | 4.4775 | 0.8567 | - |
2.7778 | 1000 | 4.2255 | 4.4733 | 0.8565 | - |
3.0 | 1080 | - | - | - | 0.8219 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for ymelka/camembert-cosmetic-similarity
Base model
almanach/camembert-base
Finetuned
ymelka/camembert-cosmetic-finetuned
Dataset used to train ymelka/camembert-cosmetic-similarity
Evaluation results
- Pearson Cosine on stsb fr devself-reported0.640
- Spearman Cosine on stsb fr devself-reported0.666
- Pearson Manhattan on stsb fr devself-reported0.708
- Spearman Manhattan on stsb fr devself-reported0.710
- Pearson Euclidean on stsb fr devself-reported0.618
- Spearman Euclidean on stsb fr devself-reported0.634
- Pearson Dot on stsb fr devself-reported0.186
- Spearman Dot on stsb fr devself-reported0.217
- Pearson Max on stsb fr devself-reported0.708
- Spearman Max on stsb fr devself-reported0.710