metadata
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
model-index:
- name: whisper-small-ga2en-v3.2-r
results: []
datasets:
- ymoslem/IWSLT2023-GA-EN
- ymoslem/FLEURS-GA-EN
- ymoslem/BitesizeIrish-GA-EN
- ymoslem/SpokenWords-GA-EN-MTed
- ymoslem/Tatoeba-Speech-Irish
- ymoslem/Wikimedia-Speech-Irish
language:
- ga
- en
metrics:
- bleu
- wer
- chrf
library_name: transformers
whisper-small-ga2en-v3.2-r
This model is a fine-tuned version of openai/whisper-small on the IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia datasets. The best model checkpoint (this version) based on ChrF is at step 2700, epoch 3.5433, and it achieves the following results on the evaluation set:
- Loss: 1.4313
- Bleu: 30.87
- Chrf: 47.72
- Wer: 64.2954
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Hardware
1 NVIDIA A100-SXM4-80GB
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 3000
- mixed_precision_training: Native AMP
Training results
Step | Training Loss | Validation Loss | Bleu | Chrf | Wer |
---|---|---|---|---|---|
100 | 2.311900 | 1.773697 | 9.20 | 28.23 | 120.486267 |
200 | 1.870000 | 1.479052 | 16.90 | 33.01 | 83.701036 |
300 | 1.627700 | 1.372679 | 20.33 | 38.68 | 84.061234 |
400 | 1.460400 | 1.309611 | 24.52 | 40.37 | 74.696083 |
500 | 1.336300 | 1.283173 | 20.35 | 40.77 | 86.537596 |
600 | 1.193300 | 1.255632 | 20.63 | 41.37 | 95.632598 |
700 | 1.015600 | 1.251285 | 21.24 | 41.42 | 82.170194 |
800 | 0.518300 | 1.292586 | 28.08 | 44.76 | 66.951824 |
900 | 0.467300 | 1.329429 | 25.16 | 42.93 | 76.316974 |
1000 | 0.438700 | 1.330984 | 28.29 | 46.08 | 67.672220 |
1100 | 0.403600 | 1.300828 | 27.43 | 46.32 | 68.977938 |
1200 | 0.379500 | 1.323791 | 30.02 | 45.48 | 63.800090 |
1300 | 0.337100 | 1.327949 | 30.40 | 47.61 | 61.999100 |
1400 | 0.288000 | 1.359497 | 28.13 | 44.60 | 66.501576 |
1500 | 0.265100 | 1.355470 | 26.58 | 45.51 | 71.319226 |
1600 | 0.100800 | 1.400149 | 26.19 | 46.02 | 72.985142 |
1700 | 0.092300 | 1.383455 | 24.83 | 46.18 | 77.532643 |
1800 | 0.103900 | 1.404863 | 22.19 | 43.19 | 88.743809 |
1900 | 0.090100 | 1.402833 | 29.73 | 45.85 | 66.186403 |
2000 | 0.084200 | 1.418717 | 28.18 | 45.29 | 73.570464 |
2100 | 0.074800 | 1.461650 | 26.58 | 44.66 | 74.020711 |
2200 | 0.072000 | 1.400547 | 31.01 | 47.30 | 61.143629 |
2300 | 0.042900 | 1.424147 | 28.72 | 45.53 | 65.511031 |
2400 | 0.025200 | 1.412174 | 27.18 | 47.19 | 74.020711 |
2500 | 0.026500 | 1.438945 | 30.01 | 46.73 | 65.105808 |
2600 | 0.023300 | 1.454140 | 30.93 | 46.65 | 62.404322 |
2700 | 0.021600 | 1.431275 | 30.87 | 47.72 | 64.295362 |
2800 | 0.019200 | 1.439022 | 30.50 | 46.98 | 65.150833 |
2900 | 0.018200 | 1.439916 | 31.09 | 47.27 | 63.529941 |
3000 | 0.019000 | 1.444545 | 30.83 | 47.35 | 64.205313 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.2.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1