Jeolla_encoder / README.md
yomilimi's picture
End of training
4b3accb verified
|
raw
history blame
1.59 kB
metadata
license: mit
base_model: gogamza/kobart-base-v2
tags:
  - generated_from_trainer
metrics:
  - bleu
model-index:
  - name: Jeolla_encoder
    results: []

Jeolla_encoder

This model is a fine-tuned version of gogamza/kobart-base-v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0132
  • Bleu: 89.0781
  • Gen Len: 14.0615

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
0.0168 1.0 15477 0.0157 88.8862 14.0583
0.0143 2.0 30954 0.0136 89.0198 14.0637
0.0123 3.0 46431 0.0132 89.0781 14.0615

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1