SMM4H-2024 Task 2 Japanese RE
Overview
This is a relation extraction model created by fine-tuning daisaku-s/medtxt_ner_roberta on SMM4H 2024 Task 2b corpus.
Tag set:
- CAUSED
- TREATMENT_FOR
Usage
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
text = "銈点兂銉椼儷銉嗐偔銈广儓"
model_name = "yseop/SMM4H2024_Task2b_ja"
id2label = ['O', 'CAUSED', 'TREATMENT_FOR']
with torch.inference_mode():
model = AutoModelForSequenceClassification.from_pretrained(model_name).eval()
tokenizer = AutoTokenizer.from_pretrained(model_name)
encoded_input = tokenizer(text, return_tensors='pt', max_length=512)
output = re_model(**encoded_input).logits
class_id = output.argmax().item()
print(id2label[class_id])
Results
Relation | tp | fp | fn | precision | recall | f1 |
---|---|---|---|---|---|---|
CAUSED|DISORDER|DISORDER | 1 | 163 | 38 | 0.0061 | 0.0256 | 0.0099 |
CAUSED|DISORDER|FUNCTION | 0 | 70 | 13 | 0 | 0 | 0 |
CAUSED|DRUG|DISORDER | 9 | 196 | 105 | 0.0439 | 0.0789 | 0.0564 |
CAUSED|DRUG|FUNCTION | 2 | 59 | 7 | 0.0328 | 0.2222 | 0.0571 |
TREATMENT_FOR|DISORDER|DISORDER | 0 | 12 | 0 | 0 | 0 | 0 |
TREATMENT_FOR|DISORDER|FUNCTION | 0 | 3 | 0 | 0 | 0 | 0 |
TREATMENT_FOR|DRUG|DISORDER | 0 | 15 | 91 | 0 | 0 | 0 |
TREATMENT_FOR|DRUG|FUNCTION | 0 | 0 | 1 | 0 | 0 | 0 |
all | 12 | 518 | 255 | 0.0226 | 0.0449 | 0.0301 |
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.