Edit model card

This model is for debugging purposes. It is randomly initialized using the config from mistralai/Mamba-Codestral-7B-v0.1 but with a smaller size.

Codes:

import os

import torch

from huggingface_hub import create_repo, upload_folder
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    GenerationConfig,
    Mamba2Config,
    pipeline,
    set_seed,
)

model_id = "mistralai/Mamba-Codestral-7B-v0.1"
repo_id = "yujiepan/mamba2-codestral-v0.1-tiny-random"
save_path = f"/tmp/{repo_id}"

os.system(f'rm -rf {save_path}')

config = Mamba2Config.from_pretrained(model_id)
config.use_cache = True
config.num_hidden_layers = 2
config.num_heads = 8
config.head_dim = 4
config.hidden_size = 8
config.expand = 4
config.intermediate_size = 32
config.state_size = 8
config.n_groups = 2

assert config.intermediate_size == \
    config.hidden_size * config.expand == config.num_heads * config.head_dim
assert config.num_heads // config.n_groups > 0
assert config.num_heads % 8 == 0

tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
tokenizer.save_pretrained(save_path)

model = AutoModelForCausalLM.from_config(
    config, torch_dtype=torch.bfloat16,
    trust_remote_code=True,
)
model.generation_config = GenerationConfig.from_pretrained(
    model_id,
    trust_remote_code=True,
)

set_seed(42)
with torch.no_grad():
    for name, p in sorted(model.named_parameters()):
        print(name, p.shape)
        torch.nn.init.uniform_(p, -0.5, 0.5)

model.save_pretrained(save_path)

pipe = pipeline(
    "text-generation",
    model=save_path,
    device="cuda",
    trust_remote_code=True,
    max_new_tokens=20,
)
print(pipe("Hello World!"))

with open(__file__, 'r') as f:
    codes = f.read()
with open(f'{save_path}/README.md', 'w') as f:
    f.write(
        f'''---
library_name: transformers
pipeline_tag: text-generation
inference: true
widget:
- text: Hello!
  example_title: Hello world
  group: Python
---

This model is for debugging purposes. It is randomly initialized using the config from [{model_id}](https://huggingface.co/{model_id}) but with a smaller size. 

Codes:
```python
{codes}
```'''
    )

create_repo(repo_id, exist_ok=True)
upload_folder(repo_id=repo_id, folder_path=save_path, repo_type='model')
Downloads last month
4
Safetensors
Model size
527k params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.