emotions_bert_qlora / README.md
yunaseo's picture
yunase/Bert_QLoRA_emotion_detection
feb15e9 verified
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: bert-base-uncased
metrics:
- accuracy
model-index:
- name: emotions_bert_qlora
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# emotions_bert_qlora
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5184
- F1 Micro: 0.6855
- F1 Macro: 0.6029
- Accuracy: 0.2129
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Micro | F1 Macro | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|:--------:|:--------:|
| 0.8094 | 0.4082 | 20 | 0.7752 | 0.4570 | 0.1865 | 0.0990 |
| 0.7206 | 0.8163 | 40 | 0.6446 | 0.5938 | 0.3669 | 0.1230 |
| 0.6381 | 1.2245 | 60 | 0.6094 | 0.6163 | 0.4260 | 0.1159 |
| 0.5836 | 1.6327 | 80 | 0.5757 | 0.6345 | 0.4702 | 0.1553 |
| 0.5631 | 2.0408 | 100 | 0.5504 | 0.6674 | 0.5290 | 0.1922 |
| 0.5132 | 2.4490 | 120 | 0.5355 | 0.6686 | 0.5440 | 0.1922 |
| 0.504 | 2.8571 | 140 | 0.5260 | 0.6710 | 0.5843 | 0.1780 |
| 0.4853 | 3.2653 | 160 | 0.5209 | 0.6689 | 0.5854 | 0.1858 |
| 0.4494 | 3.6735 | 180 | 0.5165 | 0.6759 | 0.5942 | 0.1909 |
| 0.4663 | 4.0816 | 200 | 0.5146 | 0.6834 | 0.5900 | 0.2 |
| 0.4361 | 4.4898 | 220 | 0.5073 | 0.6876 | 0.6013 | 0.2214 |
| 0.4278 | 4.8980 | 240 | 0.5112 | 0.6830 | 0.6018 | 0.2045 |
| 0.4175 | 5.3061 | 260 | 0.5119 | 0.6775 | 0.5929 | 0.2013 |
| 0.4 | 5.7143 | 280 | 0.5118 | 0.6846 | 0.5961 | 0.2039 |
| 0.4088 | 6.1224 | 300 | 0.5100 | 0.6819 | 0.6015 | 0.2117 |
| 0.3811 | 6.5306 | 320 | 0.5211 | 0.6759 | 0.5952 | 0.1916 |
| 0.389 | 6.9388 | 340 | 0.5152 | 0.6770 | 0.6004 | 0.1974 |
| 0.3806 | 7.3469 | 360 | 0.5183 | 0.6853 | 0.6029 | 0.2123 |
| 0.3686 | 7.7551 | 380 | 0.5222 | 0.6739 | 0.5940 | 0.2019 |
| 0.3719 | 8.1633 | 400 | 0.5207 | 0.6777 | 0.5941 | 0.2091 |
| 0.3538 | 8.5714 | 420 | 0.5242 | 0.6765 | 0.5943 | 0.2006 |
| 0.3591 | 8.9796 | 440 | 0.5247 | 0.6784 | 0.5953 | 0.2091 |
| 0.3554 | 9.3878 | 460 | 0.5259 | 0.6815 | 0.5978 | 0.2142 |
| 0.346 | 9.7959 | 480 | 0.5256 | 0.6809 | 0.5976 | 0.2142 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1