metadata
license: gemma
base_model: google/gemma-1.1-2b-it
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: emotions_google_gemma
results: []
emotions_google_gemma
This model is a fine-tuned version of google/gemma-1.1-2b-it on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.8963
- F1 Micro: 0.6927
- F1 Macro: 0.5713
- Accuracy: 0.2537
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Micro | F1 Macro | Accuracy |
---|---|---|---|---|---|---|
0.7843 | 0.1035 | 20 | 0.6332 | 0.6164 | 0.4369 | 0.1301 |
0.5717 | 0.2070 | 40 | 0.5575 | 0.6468 | 0.5359 | 0.1793 |
0.5341 | 0.3105 | 60 | 0.5292 | 0.6788 | 0.5562 | 0.2006 |
0.5054 | 0.4140 | 80 | 0.5143 | 0.6830 | 0.5716 | 0.2045 |
0.4748 | 0.5175 | 100 | 0.5039 | 0.6875 | 0.5797 | 0.1754 |
0.5144 | 0.6210 | 120 | 0.5028 | 0.6804 | 0.5988 | 0.1631 |
0.5055 | 0.7245 | 140 | 0.5101 | 0.6823 | 0.5728 | 0.2039 |
0.5124 | 0.8279 | 160 | 0.4851 | 0.6854 | 0.5947 | 0.1793 |
0.488 | 0.9314 | 180 | 0.4906 | 0.6777 | 0.5947 | 0.1638 |
0.4867 | 1.0349 | 200 | 0.4970 | 0.6845 | 0.6033 | 0.2227 |
0.3367 | 1.1384 | 220 | 0.5478 | 0.6977 | 0.5848 | 0.2188 |
0.3342 | 1.2419 | 240 | 0.5531 | 0.6860 | 0.5898 | 0.2110 |
0.3161 | 1.3454 | 260 | 0.5754 | 0.6719 | 0.5768 | 0.1955 |
0.3312 | 1.4489 | 280 | 0.5335 | 0.6840 | 0.5906 | 0.1961 |
0.3633 | 1.5524 | 300 | 0.5255 | 0.6799 | 0.5940 | 0.1883 |
0.3199 | 1.6559 | 320 | 0.5461 | 0.6722 | 0.5868 | 0.1922 |
0.3385 | 1.7594 | 340 | 0.5417 | 0.6888 | 0.5795 | 0.2149 |
0.3292 | 1.8629 | 360 | 0.5324 | 0.6883 | 0.5969 | 0.1981 |
0.3347 | 1.9664 | 380 | 0.5274 | 0.6890 | 0.5881 | 0.2006 |
0.2122 | 2.0699 | 400 | 0.6957 | 0.6755 | 0.5671 | 0.2350 |
0.1289 | 2.1734 | 420 | 0.6570 | 0.6814 | 0.5825 | 0.1974 |
0.1505 | 2.2768 | 440 | 0.6495 | 0.6854 | 0.5857 | 0.2117 |
0.1345 | 2.3803 | 460 | 0.7193 | 0.6813 | 0.5681 | 0.2045 |
0.1438 | 2.4838 | 480 | 0.7042 | 0.6782 | 0.5649 | 0.2065 |
0.14 | 2.5873 | 500 | 0.6777 | 0.6855 | 0.5826 | 0.2104 |
0.146 | 2.6908 | 520 | 0.6699 | 0.6837 | 0.5840 | 0.2129 |
0.138 | 2.7943 | 540 | 0.6954 | 0.6884 | 0.5820 | 0.2369 |
0.1302 | 2.8978 | 560 | 0.7090 | 0.6828 | 0.5777 | 0.2220 |
0.1324 | 3.0013 | 580 | 0.7075 | 0.6845 | 0.5818 | 0.2259 |
0.0472 | 3.1048 | 600 | 0.8346 | 0.6867 | 0.5575 | 0.2414 |
0.0544 | 3.2083 | 620 | 0.7725 | 0.6785 | 0.5706 | 0.2207 |
0.0483 | 3.3118 | 640 | 0.8136 | 0.6865 | 0.5659 | 0.2291 |
0.0465 | 3.4153 | 660 | 0.8333 | 0.6797 | 0.5613 | 0.2278 |
0.0511 | 3.5188 | 680 | 0.8234 | 0.6852 | 0.5641 | 0.2265 |
0.0511 | 3.6223 | 700 | 0.8298 | 0.6905 | 0.5712 | 0.2401 |
0.0406 | 3.7257 | 720 | 0.8292 | 0.6886 | 0.5721 | 0.2421 |
0.0565 | 3.8292 | 740 | 0.8266 | 0.6927 | 0.5721 | 0.2408 |
0.0554 | 3.9327 | 760 | 0.7764 | 0.6887 | 0.5765 | 0.2350 |
0.0319 | 4.0362 | 780 | 0.8450 | 0.6825 | 0.5650 | 0.2388 |
0.0161 | 4.1397 | 800 | 0.8948 | 0.6892 | 0.5648 | 0.2524 |
0.0174 | 4.2432 | 820 | 0.9146 | 0.6910 | 0.5659 | 0.2570 |
0.0168 | 4.3467 | 840 | 0.9068 | 0.6874 | 0.5657 | 0.2414 |
0.0184 | 4.4502 | 860 | 0.9225 | 0.6872 | 0.5615 | 0.2531 |
0.0123 | 4.5537 | 880 | 0.9062 | 0.6882 | 0.5639 | 0.2511 |
0.0149 | 4.6572 | 900 | 0.9087 | 0.6889 | 0.5660 | 0.2492 |
0.0199 | 4.7607 | 920 | 0.8948 | 0.6917 | 0.5722 | 0.2472 |
0.0144 | 4.8642 | 940 | 0.8944 | 0.6929 | 0.5724 | 0.2518 |
0.015 | 4.9677 | 960 | 0.8963 | 0.6925 | 0.5709 | 0.2531 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1