Edit model card

bert-base-multilingual-uncased-classification

This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2025
  • Accuracy: 0.9563

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 95 0.2181 0.9523
No log 2.0 190 0.2287 0.9543
No log 3.0 285 0.2135 0.9523
No log 4.0 380 0.1975 0.9523
No log 5.0 475 0.2015 0.9563
0.0475 6.0 570 0.1930 0.9523
0.0475 7.0 665 0.1784 0.9563
0.0475 8.0 760 0.2306 0.9563
0.0475 9.0 855 0.2177 0.9543
0.0475 10.0 950 0.1579 0.9563
0.0353 11.0 1045 0.1645 0.9563
0.0353 12.0 1140 0.2233 0.9563
0.0353 13.0 1235 0.1985 0.9523
0.0353 14.0 1330 0.1932 0.9543
0.0353 15.0 1425 0.2461 0.9563
0.0312 16.0 1520 0.1834 0.9563
0.0312 17.0 1615 0.1821 0.9543
0.0312 18.0 1710 0.1985 0.9563
0.0312 19.0 1805 0.1984 0.9583
0.0312 20.0 1900 0.2036 0.9583
0.0312 21.0 1995 0.1957 0.9563
0.0264 22.0 2090 0.1996 0.9563
0.0264 23.0 2185 0.2041 0.9583
0.0264 24.0 2280 0.2022 0.9583
0.0264 25.0 2375 0.2025 0.9563

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2
Downloads last month
10
Safetensors
Model size
167M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yuridrcosta/bert-base-multilingual-uncased-classification

Finetuned
(390)
this model