test / README.md
zachwatanabe's picture
searchlightai/resume-token-classifier
8bc55f5
|
raw
history blame
8.63 kB
metadata
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: test
    results: []

test

This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0314
  • Precision: 0.0
  • Recall: 0.0
  • F1: 0.0
  • Accuracy: 0.9933

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 40000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0381 0.13 500 0.0777 0.0 0.0 0.0 0.9745
0.0669 0.26 1000 0.0545 0.0 0.0 0.0 0.9790
0.0595 0.39 1500 0.0545 0.0 0.0 0.0 0.9803
0.054 0.52 2000 0.0555 0.0 0.0 0.0 0.9796
0.0502 0.65 2500 0.0451 0.0 0.0 0.0 0.9828
0.0474 0.78 3000 0.0486 0.0 0.0 0.0 0.9818
0.0458 0.92 3500 0.0417 0.0 0.0 0.0 0.9836
0.0415 1.05 4000 0.0440 0.0 0.0 0.0 0.9827
0.0372 1.18 4500 0.0432 0.0 0.0 0.0 0.9839
0.0391 1.31 5000 0.0442 0.0 0.0 0.0 0.9839
0.0368 1.44 5500 0.0377 0.0 0.0 0.0 0.9856
0.0388 1.57 6000 0.0417 0.0 0.0 0.0 0.9846
0.0351 1.7 6500 0.0363 0.0 0.0 0.0 0.9857
0.0357 1.83 7000 0.0383 0.0 0.0 0.0 0.9858
0.0336 1.96 7500 0.0371 0.0 0.0 0.0 0.9860
0.0309 2.09 8000 0.0373 0.0 0.0 0.0 0.9859
0.0288 2.22 8500 0.0355 0.0 0.0 0.0 0.9870
0.0288 2.35 9000 0.0359 0.0 0.0 0.0 0.9867
0.0285 2.49 9500 0.0369 0.0 0.0 0.0 0.9872
0.0307 2.62 10000 0.0322 0.0 0.0 0.0 0.9880
0.028 2.75 10500 0.0307 0.0 0.0 0.0 0.9886
0.0246 2.88 11000 0.0326 0.0 0.0 0.0 0.9881
0.0267 3.01 11500 0.0346 0.0 0.0 0.0 0.9882
0.022 3.14 12000 0.0316 0.0 0.0 0.0 0.9889
0.0218 3.27 12500 0.0357 0.0 0.0 0.0 0.9883
0.0217 3.4 13000 0.0363 0.0 0.0 0.0 0.9883
0.0208 3.53 13500 0.0340 0.0 0.0 0.0 0.9894
0.0223 3.66 14000 0.0304 0.0 0.0 0.0 0.9892
0.0232 3.79 14500 0.0319 0.0 0.0 0.0 0.9894
0.0229 3.92 15000 0.0307 0.0 0.0 0.0 0.9901
0.0192 4.06 15500 0.0310 0.0 0.0 0.0 0.9905
0.0178 4.19 16000 0.0345 0.0 0.0 0.0 0.9897
0.0178 4.32 16500 0.0309 0.0 0.0 0.0 0.9902
0.0173 4.45 17000 0.0328 0.0 0.0 0.0 0.9904
0.0176 4.58 17500 0.0316 0.0 0.0 0.0 0.9908
0.017 4.71 18000 0.0307 0.0 0.0 0.0 0.9912
0.0163 4.84 18500 0.0329 0.0 0.0 0.0 0.9909
0.018 4.97 19000 0.0295 0.0 0.0 0.0 0.9910
0.0143 5.1 19500 0.0367 0.0 0.0 0.0 0.9903
0.0144 5.23 20000 0.0317 0.0 0.0 0.0 0.9915
0.0158 5.36 20500 0.0290 0.0 0.0 0.0 0.9917
0.0143 5.49 21000 0.0315 0.0 0.0 0.0 0.9917
0.0137 5.63 21500 0.0310 0.0 0.0 0.0 0.9913
0.0135 5.76 22000 0.0310 0.0 0.0 0.0 0.9913
0.0128 5.89 22500 0.0290 0.0 0.0 0.0 0.9917
0.0132 6.02 23000 0.0314 0.0 0.0 0.0 0.9921
0.0124 6.15 23500 0.0274 0.0 0.0 0.0 0.9921
0.0114 6.28 24000 0.0300 0.0 0.0 0.0 0.9921
0.0111 6.41 24500 0.0291 0.0 0.0 0.0 0.9922
0.0109 6.54 25000 0.0307 0.0 0.0 0.0 0.9923
0.0117 6.67 25500 0.0328 0.0 0.0 0.0 0.9921
0.0112 6.8 26000 0.0293 0.0 0.0 0.0 0.9924
0.012 6.93 26500 0.0300 0.0 0.0 0.0 0.9924
0.0102 7.06 27000 0.0330 0.0 0.0 0.0 0.9921
0.0094 7.2 27500 0.0323 0.0 0.0 0.0 0.9922
0.0091 7.33 28000 0.0309 0.0 0.0 0.0 0.9924
0.0087 7.46 28500 0.0331 0.0 0.0 0.0 0.9920
0.0091 7.59 29000 0.0332 0.0 0.0 0.0 0.9923
0.0095 7.72 29500 0.0298 0.0 0.0 0.0 0.9925
0.0083 7.85 30000 0.0303 0.0 0.0 0.0 0.9929
0.0097 7.98 30500 0.0298 0.0 0.0 0.0 0.9928
0.0069 8.11 31000 0.0319 0.0 0.0 0.0 0.9926
0.0086 8.24 31500 0.0314 0.0 0.0 0.0 0.9929
0.0079 8.37 32000 0.0306 0.0 0.0 0.0 0.9929
0.0065 8.5 32500 0.0317 0.0 0.0 0.0 0.9926
0.0072 8.63 33000 0.0307 0.0 0.0 0.0 0.9927
0.0082 8.77 33500 0.0306 0.0 0.0 0.0 0.9929
0.0086 8.9 34000 0.0312 0.0 0.0 0.0 0.9931
0.0079 9.03 34500 0.0329 0.0 0.0 0.0 0.9929
0.0061 9.16 35000 0.0326 0.0 0.0 0.0 0.9928
0.0074 9.29 35500 0.0315 0.0 0.0 0.0 0.9928
0.0068 9.42 36000 0.0310 0.0 0.0 0.0 0.9931
0.0059 9.55 36500 0.0318 0.0 0.0 0.0 0.9930
0.0064 9.68 37000 0.0307 0.0 0.0 0.0 0.9933
0.0063 9.81 37500 0.0308 0.0 0.0 0.0 0.9930
0.0062 9.94 38000 0.0311 0.0 0.0 0.0 0.9931
0.0058 10.07 38500 0.0314 0.0 0.0 0.0 0.9932
0.0051 10.2 39000 0.0316 0.0 0.0 0.0 0.9933
0.0065 10.33 39500 0.0315 0.0 0.0 0.0 0.9933
0.0059 10.47 40000 0.0314 0.0 0.0 0.0 0.9933

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0