|
--- |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: facebook/bart-base |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: bart-base-lora-summarization-medical |
|
results: [] |
|
datasets: |
|
- mystic-leung/medical_cord19 |
|
language: |
|
- en |
|
pipeline_tag: summarization |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bart-base-lora-summarization-medical |
|
|
|
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the 'mystic-leung/medical_cord19' dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.4119 |
|
- Rouge1: 0.4304 |
|
- Rouge2: 0.2352 |
|
- Rougel: 0.3663 |
|
- Rougelsum: 0.3660 |
|
- Gen Len: 18.1767 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 2.5079 | 1.0 | 6250 | 2.121959 | 0.4263 | 0.2290 | 0.3597 | 0.3594 | 18.3300 | |
|
| 2.4566 | 2.0 | 12500 | 2.084411 | 0.4267 | 0.2312 | 0.3622 | 0.3618 | 18.2773 | |
|
| 2.4242 | 3.0 | 18750 | 2.061557 | 0.4311 | 0.2358 | 0.3660 | 0.3656 | 18.1307 | |
|
| 2.4058 | 4.0 | 25000 | 2.053182 | 0.4316 | 0.2367 | 0.3660 | 0.3659 | 18.1753 | |
|
| 2.4119 | 5.0 | 31250 | 2.052128 | 0.4304 | 0.2352 | 0.3663 | 0.3660 | 18.1767 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.10.0 |
|
- Transformers 4.40.1 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |