Image-to-Video finetuning - zhuhz22/try4

Pipeline usage

You can use the pipeline like so:

from diffusers import EulerDiscreteScheduler
import torch
from diffusers.utils import load_image, export_to_video
from svd.inference.pipline_CILsvd import StableVideoDiffusionCILPipeline

# set the start time M (sigma_max) for inference
scheduler = EulerDiscreteScheduler.from_pretrained(
    "zhuhz22/try4",
    subfolder="scheduler",
    sigma_max=100
)

pipeline = StableVideoDiffusionCILPipeline.from_pretrained(
    "zhuhz22/try4", scheduler=scheduler, torch_dtype=torch.float16, variant="fp16"
) # Note that set the default parameters, fps, motion_bucket_id

pipeline.enable_model_cpu_offload()

# demo
image = load_image("demo/a car parked in a parking lot with palm trees nearby,calm seas and skies..png")
image = image.resize((512,320))

generator = torch.manual_seed(42)

# analytic_path:
# if is video path, compute the initial noise automatically.
# if is tensor path, load
# if none, standard inference
analytic_path=None

frames = pipeline(
    image, 
    height=image.height,
    width=image.width,
    num_frames=16,
    fps=3,
    motion_bucket_id=20, 
    decode_chunk_size=8, 
    generator=generator, 
    analytic_path=analytic_path
    ).frames[0]

export_to_video(frames, "generated.mp4", fps=7)

Intended uses & limitations

How to use

# TODO: add an example code snippet for running this diffusion pipeline

Limitations and bias

[TODO: provide examples of latent issues and potential remediations]

Training details

[TODO: describe the data used to train the model]

Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.