Edit model card

50-finetuned-spiderTraining50-200

This model is a fine-tuned version of facebook/convnextv2-tiny-22k-384 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5289
  • Accuracy: 0.8759
  • Precision: 0.8772
  • Recall: 0.8744
  • F1: 0.8721

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.9803 1.0 125 1.6169 0.6046 0.6252 0.5927 0.5728
1.1397 2.0 250 0.8750 0.7508 0.7833 0.7512 0.7476
0.9094 3.0 375 0.7509 0.7738 0.7908 0.7691 0.7669
0.9153 4.0 500 0.7770 0.7688 0.8162 0.7669 0.7704
0.9223 5.0 625 0.9739 0.7327 0.7826 0.7285 0.7262
0.8113 6.0 750 0.8510 0.7568 0.7932 0.7511 0.7478
0.7412 7.0 875 0.9463 0.7197 0.7649 0.7221 0.7146
0.6573 8.0 1000 0.8012 0.7778 0.8009 0.7821 0.7738
0.6845 9.0 1125 0.8514 0.7688 0.7995 0.7713 0.7648
0.5381 10.0 1250 0.8984 0.7558 0.7959 0.7533 0.7543
0.474 11.0 1375 0.7790 0.7928 0.8009 0.7959 0.7899
0.5682 12.0 1500 0.7508 0.7868 0.8025 0.7881 0.7841
0.5138 13.0 1625 0.8815 0.7718 0.7932 0.7750 0.7708
0.5068 14.0 1750 0.8265 0.7948 0.8180 0.8000 0.7952
0.4747 15.0 1875 0.7926 0.7948 0.8034 0.7972 0.7905
0.4201 16.0 2000 0.7410 0.8058 0.8192 0.8022 0.8041
0.3609 17.0 2125 0.7136 0.8128 0.8305 0.8112 0.8112
0.3398 18.0 2250 0.7736 0.8018 0.8194 0.8035 0.7983
0.3628 19.0 2375 0.8398 0.8058 0.8252 0.8058 0.8033
0.3083 20.0 2500 0.8905 0.7798 0.8013 0.7771 0.7794
0.3325 21.0 2625 0.7939 0.8068 0.8186 0.8093 0.8024
0.3219 22.0 2750 0.7737 0.8328 0.8402 0.8297 0.8270
0.3661 23.0 2875 0.7341 0.8258 0.8361 0.8264 0.8245
0.298 24.0 3000 0.7641 0.8158 0.8314 0.8183 0.8142
0.2679 25.0 3125 0.7392 0.8158 0.8240 0.8126 0.8089
0.2654 26.0 3250 0.7478 0.8198 0.8320 0.8201 0.8183
0.2818 27.0 3375 0.6509 0.8398 0.8433 0.8426 0.8371
0.2443 28.0 3500 0.7111 0.8378 0.8472 0.8352 0.8348
0.1856 29.0 3625 0.8103 0.8288 0.8394 0.8295 0.8252
0.2489 30.0 3750 0.6829 0.8388 0.8456 0.8424 0.8348
0.2588 31.0 3875 0.6860 0.8358 0.8421 0.8377 0.8334
0.1844 32.0 4000 0.6958 0.8428 0.8497 0.8456 0.8403
0.2136 33.0 4125 0.6840 0.8438 0.8508 0.8425 0.8414
0.1896 34.0 4250 0.6655 0.8589 0.8658 0.8587 0.8566
0.148 35.0 4375 0.7271 0.8529 0.8588 0.8526 0.8488
0.161 36.0 4500 0.7242 0.8498 0.8514 0.8491 0.8448
0.2284 37.0 4625 0.7010 0.8368 0.8422 0.8379 0.8351
0.1886 38.0 4750 0.7341 0.8408 0.8519 0.8437 0.8404
0.1352 39.0 4875 0.6598 0.8539 0.8604 0.8531 0.8520
0.1201 40.0 5000 0.6023 0.8679 0.8734 0.8716 0.8684
0.133 41.0 5125 0.6564 0.8569 0.8651 0.8551 0.8545
0.1489 42.0 5250 0.6510 0.8619 0.8643 0.8645 0.8594
0.1078 43.0 5375 0.6508 0.8619 0.8641 0.8619 0.8591
0.1243 44.0 5500 0.6339 0.8639 0.8648 0.8673 0.8618
0.1208 45.0 5625 0.5840 0.8679 0.8656 0.8677 0.8632
0.1302 46.0 5750 0.5543 0.8699 0.8702 0.8696 0.8666
0.1396 47.0 5875 0.5533 0.8709 0.8727 0.8710 0.8677
0.0995 48.0 6000 0.5555 0.8699 0.8723 0.8697 0.8663
0.0936 49.0 6125 0.5349 0.8749 0.8757 0.8741 0.8710
0.079 50.0 6250 0.5289 0.8759 0.8772 0.8744 0.8721

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
0
Inference API
Unable to determine this model's library. Check the docs .

Model tree for zkdeng/50-finetuned-spiderTraining50-200

Finetuned
(39)
this model