50-finetuned-spiderTraining50-200
This model is a fine-tuned version of facebook/convnextv2-tiny-22k-384 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5289
- Accuracy: 0.8759
- Precision: 0.8772
- Recall: 0.8744
- F1: 0.8721
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
1.9803 | 1.0 | 125 | 1.6169 | 0.6046 | 0.6252 | 0.5927 | 0.5728 |
1.1397 | 2.0 | 250 | 0.8750 | 0.7508 | 0.7833 | 0.7512 | 0.7476 |
0.9094 | 3.0 | 375 | 0.7509 | 0.7738 | 0.7908 | 0.7691 | 0.7669 |
0.9153 | 4.0 | 500 | 0.7770 | 0.7688 | 0.8162 | 0.7669 | 0.7704 |
0.9223 | 5.0 | 625 | 0.9739 | 0.7327 | 0.7826 | 0.7285 | 0.7262 |
0.8113 | 6.0 | 750 | 0.8510 | 0.7568 | 0.7932 | 0.7511 | 0.7478 |
0.7412 | 7.0 | 875 | 0.9463 | 0.7197 | 0.7649 | 0.7221 | 0.7146 |
0.6573 | 8.0 | 1000 | 0.8012 | 0.7778 | 0.8009 | 0.7821 | 0.7738 |
0.6845 | 9.0 | 1125 | 0.8514 | 0.7688 | 0.7995 | 0.7713 | 0.7648 |
0.5381 | 10.0 | 1250 | 0.8984 | 0.7558 | 0.7959 | 0.7533 | 0.7543 |
0.474 | 11.0 | 1375 | 0.7790 | 0.7928 | 0.8009 | 0.7959 | 0.7899 |
0.5682 | 12.0 | 1500 | 0.7508 | 0.7868 | 0.8025 | 0.7881 | 0.7841 |
0.5138 | 13.0 | 1625 | 0.8815 | 0.7718 | 0.7932 | 0.7750 | 0.7708 |
0.5068 | 14.0 | 1750 | 0.8265 | 0.7948 | 0.8180 | 0.8000 | 0.7952 |
0.4747 | 15.0 | 1875 | 0.7926 | 0.7948 | 0.8034 | 0.7972 | 0.7905 |
0.4201 | 16.0 | 2000 | 0.7410 | 0.8058 | 0.8192 | 0.8022 | 0.8041 |
0.3609 | 17.0 | 2125 | 0.7136 | 0.8128 | 0.8305 | 0.8112 | 0.8112 |
0.3398 | 18.0 | 2250 | 0.7736 | 0.8018 | 0.8194 | 0.8035 | 0.7983 |
0.3628 | 19.0 | 2375 | 0.8398 | 0.8058 | 0.8252 | 0.8058 | 0.8033 |
0.3083 | 20.0 | 2500 | 0.8905 | 0.7798 | 0.8013 | 0.7771 | 0.7794 |
0.3325 | 21.0 | 2625 | 0.7939 | 0.8068 | 0.8186 | 0.8093 | 0.8024 |
0.3219 | 22.0 | 2750 | 0.7737 | 0.8328 | 0.8402 | 0.8297 | 0.8270 |
0.3661 | 23.0 | 2875 | 0.7341 | 0.8258 | 0.8361 | 0.8264 | 0.8245 |
0.298 | 24.0 | 3000 | 0.7641 | 0.8158 | 0.8314 | 0.8183 | 0.8142 |
0.2679 | 25.0 | 3125 | 0.7392 | 0.8158 | 0.8240 | 0.8126 | 0.8089 |
0.2654 | 26.0 | 3250 | 0.7478 | 0.8198 | 0.8320 | 0.8201 | 0.8183 |
0.2818 | 27.0 | 3375 | 0.6509 | 0.8398 | 0.8433 | 0.8426 | 0.8371 |
0.2443 | 28.0 | 3500 | 0.7111 | 0.8378 | 0.8472 | 0.8352 | 0.8348 |
0.1856 | 29.0 | 3625 | 0.8103 | 0.8288 | 0.8394 | 0.8295 | 0.8252 |
0.2489 | 30.0 | 3750 | 0.6829 | 0.8388 | 0.8456 | 0.8424 | 0.8348 |
0.2588 | 31.0 | 3875 | 0.6860 | 0.8358 | 0.8421 | 0.8377 | 0.8334 |
0.1844 | 32.0 | 4000 | 0.6958 | 0.8428 | 0.8497 | 0.8456 | 0.8403 |
0.2136 | 33.0 | 4125 | 0.6840 | 0.8438 | 0.8508 | 0.8425 | 0.8414 |
0.1896 | 34.0 | 4250 | 0.6655 | 0.8589 | 0.8658 | 0.8587 | 0.8566 |
0.148 | 35.0 | 4375 | 0.7271 | 0.8529 | 0.8588 | 0.8526 | 0.8488 |
0.161 | 36.0 | 4500 | 0.7242 | 0.8498 | 0.8514 | 0.8491 | 0.8448 |
0.2284 | 37.0 | 4625 | 0.7010 | 0.8368 | 0.8422 | 0.8379 | 0.8351 |
0.1886 | 38.0 | 4750 | 0.7341 | 0.8408 | 0.8519 | 0.8437 | 0.8404 |
0.1352 | 39.0 | 4875 | 0.6598 | 0.8539 | 0.8604 | 0.8531 | 0.8520 |
0.1201 | 40.0 | 5000 | 0.6023 | 0.8679 | 0.8734 | 0.8716 | 0.8684 |
0.133 | 41.0 | 5125 | 0.6564 | 0.8569 | 0.8651 | 0.8551 | 0.8545 |
0.1489 | 42.0 | 5250 | 0.6510 | 0.8619 | 0.8643 | 0.8645 | 0.8594 |
0.1078 | 43.0 | 5375 | 0.6508 | 0.8619 | 0.8641 | 0.8619 | 0.8591 |
0.1243 | 44.0 | 5500 | 0.6339 | 0.8639 | 0.8648 | 0.8673 | 0.8618 |
0.1208 | 45.0 | 5625 | 0.5840 | 0.8679 | 0.8656 | 0.8677 | 0.8632 |
0.1302 | 46.0 | 5750 | 0.5543 | 0.8699 | 0.8702 | 0.8696 | 0.8666 |
0.1396 | 47.0 | 5875 | 0.5533 | 0.8709 | 0.8727 | 0.8710 | 0.8677 |
0.0995 | 48.0 | 6000 | 0.5555 | 0.8699 | 0.8723 | 0.8697 | 0.8663 |
0.0936 | 49.0 | 6125 | 0.5349 | 0.8749 | 0.8757 | 0.8741 | 0.8710 |
0.079 | 50.0 | 6250 | 0.5289 | 0.8759 | 0.8772 | 0.8744 | 0.8721 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3
- Downloads last month
- 0
Model tree for zkdeng/50-finetuned-spiderTraining50-200
Base model
facebook/convnextv2-tiny-22k-384