leaderboard-pr-bot's picture
Adding Evaluation Results
5cf5d98 verified
|
raw
history blame
4.48 kB
metadata
license: llama2
model-index:
  - name: llama2-13b-ft-openllm-leaderboard-v1
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 59.64
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zyh3826/llama2-13b-ft-openllm-leaderboard-v1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 83.14
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zyh3826/llama2-13b-ft-openllm-leaderboard-v1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 60.93
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zyh3826/llama2-13b-ft-openllm-leaderboard-v1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 40.72
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zyh3826/llama2-13b-ft-openllm-leaderboard-v1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 77.35
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zyh3826/llama2-13b-ft-openllm-leaderboard-v1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 1.36
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zyh3826/llama2-13b-ft-openllm-leaderboard-v1
          name: Open LLM Leaderboard

finetue LLAMA2-13B myself 20231024-172733

Model Details

  • Developed by: zyh3826
  • Backbone Model: llama-2-13B
  • Library: HuggingFace Transformers

Limitations & Biases:

Llama2 and fine-tuned variants are a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2 and any fine-tuned varient's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2 variants, developers should perform safety testing and tuning tailored to their specific applications of the model.

Please see the Responsible Use Guide available at https://ai.meta.com/llama/responsible-use-guide/

License Disclaimer:

This model is bound by the license & usage restrictions of the original Llama-2 model. And comes with no warranty or gurantees of any kind.

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 53.86
AI2 Reasoning Challenge (25-Shot) 59.64
HellaSwag (10-Shot) 83.14
MMLU (5-Shot) 60.93
TruthfulQA (0-shot) 40.72
Winogrande (5-shot) 77.35
GSM8k (5-shot) 1.36