|
--- |
|
license: mit |
|
base_model: Amna100/PreTraining-MLM |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: fold_4 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/rw6sjeap) |
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/g4pyaj7k) |
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/t4il24wd) |
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/qf2ywrxq) |
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/9xmjfnoc) |
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/vp363qmp) |
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/10xzvwgi) |
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/wbresearch/FineTuning-ADE-DropOUT/runs/i1j07et7) |
|
# fold_4 |
|
|
|
This model is a fine-tuned version of [Amna100/PreTraining-MLM](https://huggingface.co/Amna100/PreTraining-MLM) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0096 |
|
- Precision: 0.7641 |
|
- Recall: 0.6825 |
|
- F1: 0.7210 |
|
- Accuracy: 0.9995 |
|
- Roc Auc: 0.9961 |
|
- Pr Auc: 0.9999 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 5 |
|
- eval_batch_size: 5 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Roc Auc | Pr Auc | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------:|:------:| |
|
| 0.0278 | 1.0 | 632 | 0.0107 | 0.5932 | 0.7270 | 0.6533 | 0.9993 | 0.9948 | 0.9999 | |
|
| 0.01 | 2.0 | 1264 | 0.0096 | 0.7641 | 0.6825 | 0.7210 | 0.9995 | 0.9961 | 0.9999 | |
|
| 0.0056 | 3.0 | 1896 | 0.0131 | 0.7207 | 0.6202 | 0.6667 | 0.9994 | 0.9827 | 0.9997 | |
|
| 0.0025 | 4.0 | 2528 | 0.0114 | 0.7937 | 0.6736 | 0.7287 | 0.9995 | 0.9860 | 0.9997 | |
|
| 0.0012 | 5.0 | 3160 | 0.0141 | 0.7727 | 0.6558 | 0.7095 | 0.9995 | 0.9860 | 0.9998 | |
|
| 0.0008 | 6.0 | 3792 | 0.0126 | 0.7659 | 0.6795 | 0.7201 | 0.9995 | 0.9894 | 0.9998 | |
|
| 0.0007 | 7.0 | 4424 | 0.0146 | 0.7845 | 0.6588 | 0.7161 | 0.9995 | 0.9917 | 0.9998 | |
|
| 0.0003 | 8.0 | 5056 | 0.0161 | 0.7789 | 0.6588 | 0.7138 | 0.9995 | 0.9908 | 0.9998 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.0.dev0 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|