output / README.md
BashirRP's picture
End of training
934a482 verified
metadata
license: mit
base_model: microsoft/deberta-base
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: output
    results: []

output

This model is a fine-tuned version of microsoft/deberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0014
  • F1: 0.9009
  • Accuracy: 0.89

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Accuracy
0.3529 0.16 10 0.2584 0.6667 0.5
0.2348 0.32 20 0.0989 0.6667 0.5
0.0492 0.48 30 0.0314 0.9615 0.96
0.0336 0.64 40 0.0132 0.6849 0.54
0.0185 0.8 50 0.0345 0.6667 0.5
0.0114 0.96 60 0.0490 0.9524 0.95
0.0118 1.12 70 0.0235 0.7042 0.58
0.01 1.28 80 0.0352 0.7299 0.63
0.0061 1.44 90 0.0195 0.8 0.75
0.0067 1.6 100 0.0108 0.8547 0.83
0.0055 1.76 110 0.0186 0.7874 0.73
0.0052 1.92 120 0.0141 0.9174 0.91

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0