|
--- |
|
license: mit |
|
base_model: microsoft/deberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: output |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# output |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0014 |
|
- F1: 0.9009 |
|
- Accuracy: 0.89 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 2 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| |
|
| 0.3529 | 0.16 | 10 | 0.2584 | 0.6667 | 0.5 | |
|
| 0.2348 | 0.32 | 20 | 0.0989 | 0.6667 | 0.5 | |
|
| 0.0492 | 0.48 | 30 | 0.0314 | 0.9615 | 0.96 | |
|
| 0.0336 | 0.64 | 40 | 0.0132 | 0.6849 | 0.54 | |
|
| 0.0185 | 0.8 | 50 | 0.0345 | 0.6667 | 0.5 | |
|
| 0.0114 | 0.96 | 60 | 0.0490 | 0.9524 | 0.95 | |
|
| 0.0118 | 1.12 | 70 | 0.0235 | 0.7042 | 0.58 | |
|
| 0.01 | 1.28 | 80 | 0.0352 | 0.7299 | 0.63 | |
|
| 0.0061 | 1.44 | 90 | 0.0195 | 0.8 | 0.75 | |
|
| 0.0067 | 1.6 | 100 | 0.0108 | 0.8547 | 0.83 | |
|
| 0.0055 | 1.76 | 110 | 0.0186 | 0.7874 | 0.73 | |
|
| 0.0052 | 1.92 | 120 | 0.0141 | 0.9174 | 0.91 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|