BrainTheos's picture
update model card README.md
27a0217
---
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- wer
model-index:
- name: wav2vec2-large-mms-1b-all-lingala-ojpl
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: audiofolder
type: audiofolder
config: default
split: train
args: default
metrics:
- name: Wer
type: wer
value: 0.2697881828316611
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-mms-1b-all-lingala-ojpl
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8394
- Wer: 0.2698
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.5442 | 0.13 | 100 | 0.9396 | 0.3307 |
| 0.9882 | 0.27 | 200 | 0.9189 | 0.3389 |
| 0.5845 | 0.4 | 300 | 0.9322 | 0.3129 |
| 0.4162 | 0.54 | 400 | 1.0742 | 0.2939 |
| 0.506 | 0.67 | 500 | 0.9626 | 0.3077 |
| 0.8789 | 0.81 | 600 | 1.0502 | 0.3055 |
| 0.6166 | 0.94 | 700 | 0.9560 | 0.2984 |
| 0.4101 | 1.08 | 800 | 0.9520 | 0.2995 |
| 0.6536 | 1.21 | 900 | 1.1213 | 0.2988 |
| 0.4921 | 1.34 | 1000 | 1.0319 | 0.3010 |
| 0.856 | 1.48 | 1100 | 0.9514 | 0.3043 |
| 0.4479 | 1.61 | 1200 | 0.9079 | 0.2843 |
| 0.7249 | 1.75 | 1300 | 0.9612 | 0.2895 |
| 0.5384 | 1.88 | 1400 | 0.9050 | 0.2928 |
| 0.709 | 2.02 | 1500 | 0.9844 | 0.2735 |
| 0.6575 | 2.15 | 1600 | 0.9377 | 0.2772 |
| 0.6115 | 2.28 | 1700 | 0.9690 | 0.2876 |
| 0.3119 | 2.42 | 1800 | 0.9222 | 0.2798 |
| 0.3591 | 2.55 | 1900 | 0.9358 | 0.2783 |
| 0.3979 | 2.69 | 2000 | 0.9156 | 0.2702 |
| 0.7541 | 2.82 | 2100 | 0.8838 | 0.2761 |
| 0.81 | 2.96 | 2200 | 0.8460 | 0.2813 |
| 0.2224 | 3.09 | 2300 | 0.9377 | 0.2694 |
| 0.2338 | 3.23 | 2400 | 0.8870 | 0.2746 |
| 0.5315 | 3.36 | 2500 | 0.8782 | 0.2672 |
| 0.4045 | 3.49 | 2600 | 0.8811 | 0.2653 |
| 0.4874 | 3.63 | 2700 | 0.9059 | 0.2620 |
| 0.304 | 3.76 | 2800 | 0.8801 | 0.2690 |
| 1.4688 | 3.9 | 2900 | 0.8394 | 0.2698 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3