Whisper Base Turkish Punctuation 4k - Chee Li

This model is a fine-tuned version of openai/whisper-base on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6273
  • Wer: 37.8782

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1116 5.5866 1000 0.4785 31.6948
0.0073 11.1732 2000 0.5710 34.9615
0.0036 16.7598 3000 0.6137 36.7349
0.0027 22.3464 4000 0.6273 37.8782

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
12
Safetensors
Model size
72.6M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for CheeLi03/whisper-base-tr-puct-4k

Finetuned
(363)
this model

Evaluation results