CheeLi03's picture
Upload tokenizer
e551ce4 verified
metadata
base_model: openai/whisper-base
datasets:
  - fleurs
language:
  - tr
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Base Turkish Punctuation 4k - Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: fleurs
          config: tr_tr
          split: None
          args: 'config: tr split: test'
        metrics:
          - type: wer
            value: 37.878198646651626
            name: Wer

Whisper Base Turkish Punctuation 4k - Chee Li

This model is a fine-tuned version of openai/whisper-base on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6273
  • Wer: 37.8782

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1116 5.5866 1000 0.4785 31.6948
0.0073 11.1732 2000 0.5710 34.9615
0.0036 16.7598 3000 0.6137 36.7349
0.0027 22.3464 4000 0.6273 37.8782

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1