|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- lg-ner |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: luganda-ner-v4 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: lg-ner |
|
type: lg-ner |
|
config: lug |
|
split: test |
|
args: lug |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.7849185946872322 |
|
- name: Recall |
|
type: recall |
|
value: 0.7862660944206008 |
|
- name: F1 |
|
type: f1 |
|
value: 0.7855917667238421 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9542220362038296 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# luganda-ner-v4 |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the lg-ner dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2222 |
|
- Precision: 0.7849 |
|
- Recall: 0.7863 |
|
- F1: 0.7856 |
|
- Accuracy: 0.9542 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 261 | 0.3533 | 0.6141 | 0.4644 | 0.5288 | 0.9208 | |
|
| 0.5126 | 2.0 | 522 | 0.2765 | 0.6658 | 0.6567 | 0.6612 | 0.9326 | |
|
| 0.5126 | 3.0 | 783 | 0.2336 | 0.6834 | 0.7133 | 0.6980 | 0.9433 | |
|
| 0.2374 | 4.0 | 1044 | 0.2207 | 0.7358 | 0.7433 | 0.7395 | 0.9489 | |
|
| 0.2374 | 5.0 | 1305 | 0.2134 | 0.7796 | 0.7528 | 0.7659 | 0.9525 | |
|
| 0.1646 | 6.0 | 1566 | 0.2359 | 0.7423 | 0.7665 | 0.7542 | 0.9484 | |
|
| 0.1646 | 7.0 | 1827 | 0.2223 | 0.7807 | 0.7854 | 0.7831 | 0.9541 | |
|
| 0.1219 | 8.0 | 2088 | 0.2300 | 0.8140 | 0.7665 | 0.7896 | 0.9557 | |
|
| 0.1219 | 9.0 | 2349 | 0.2223 | 0.7733 | 0.7966 | 0.7848 | 0.9547 | |
|
| 0.1016 | 10.0 | 2610 | 0.2222 | 0.7849 | 0.7863 | 0.7856 | 0.9542 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 1.13.1+cu116 |
|
- Datasets 2.10.1 |
|
- Tokenizers 0.13.2 |
|
|