zipnerf / tsdf.py
Cr4yfish's picture
copy files from SuLvXiangXin
c165cd8
import glob
import logging
import os
import sys
import time
import cv2
import numpy as np
from absl import app
import gin
from internal import configs
from internal import datasets
from internal import models
from internal import utils
from internal import coord
from internal import checkpoints
from internal import configs
import torch
import accelerate
from tqdm import tqdm
from torch.utils._pytree import tree_map
import torch.nn.functional as F
from skimage import measure
import trimesh
import pymeshlab as pml
from torch import Tensor
configs.define_common_flags()
class TSDF:
def __init__(self, config: configs.Config, accelerator: accelerate.Accelerator):
self.config = config
self.device = accelerator.device
self.accelerator = accelerator
self.origin = torch.tensor([-config.tsdf_radius] * 3, dtype=torch.float32, device=self.device)
self.voxel_size = 2 * config.tsdf_radius / (config.tsdf_resolution - 1)
self.resolution = config.tsdf_resolution
# create the voxel coordinates
dim = torch.arange(self.resolution)
grid = torch.stack(torch.meshgrid(dim, dim, dim, indexing="ij"), dim=0).reshape(3, -1)
period = int(grid.shape[1] / accelerator.num_processes + 0.5)
grid = grid[:, period * accelerator.process_index: period * (accelerator.process_index + 1)]
self.voxel_coords = self.origin.view(3, 1) + grid.to(self.device) * self.voxel_size
N = self.voxel_coords.shape[1]
# make voxel_coords homogeneous
voxel_world_coords = coord.inv_contract(self.voxel_coords.permute(1, 0)).permute(1, 0).view(3, -1)
# voxel_world_coords = self.voxel_coords.view(3, -1)
voxel_world_coords = torch.cat(
[voxel_world_coords, torch.ones(1, voxel_world_coords.shape[1], device=self.device)], dim=0
)
voxel_world_coords = voxel_world_coords.unsqueeze(0) # [1, 4, N]
self.voxel_world_coords = voxel_world_coords.expand(-1, *voxel_world_coords.shape[1:]) # [1, 4, N]
# initialize the values and weights
self.values = torch.ones(N, dtype=torch.float32,
device=self.device)
self.weights = torch.zeros(N, dtype=torch.float32,
device=self.device)
self.colors = torch.zeros(N, 3, dtype=torch.float32,
device=self.device)
@property
def truncation(self):
"""Returns the truncation distance."""
# TODO: clean this up
truncation = self.voxel_size * self.config.truncation_margin
return truncation
def export_mesh(self, path):
"""Extracts a mesh using marching cubes."""
# run marching cubes on CPU
tsdf_values = self.values.clamp(-1, 1)
mask = self.voxel_world_coords[:, :3].permute(0, 2, 1).norm(p=2, dim=-1) > self.config.tsdf_max_radius
tsdf_values[mask.reshape(self.values.shape)] = 1.
tsdf_values_np = self.accelerator.gather(tsdf_values).cpu().reshape((self.resolution, self.resolution, self.resolution)).numpy()
color_values_np = self.accelerator.gather(self.colors).cpu().reshape((self.resolution, self.resolution, self.resolution, 3)).numpy()
# # for OOM(resolution > 512)
# tsdf_values_np = tsdf_values.cpu().numpy()
# color_values_np = self.colors.cpu().numpy()
# path_dir = os.path.dirname(path)
# np.save(os.path.join(path_dir, 'tsdf_values_tmp_{}.npy'.format(self.accelerator.process_index)), tsdf_values_np)
# np.save(os.path.join(path_dir, 'color_values_tmp_{}.npy'.format(self.accelerator.process_index)), color_values_np)
# self.accelerator.wait_for_everyone()
if self.accelerator.is_main_process:
# print('Start marching cubes')
# tsdf_values_np = np.concatenate([np.load(os.path.join(path_dir, 'tsdf_values_tmp_{}.npy'.format(i)), allow_pickle=True) for i in
# range(self.accelerator.num_processes)]).reshape((self.resolution, self.resolution, self.resolution))
# color_values_np = np.concatenate([np.load(os.path.join(path_dir, 'color_values_tmp_{}.npy'.format(i)), allow_pickle=True) for i in
# range(self.accelerator.num_processes)]).reshape((self.resolution, self.resolution, self.resolution, 3))
# print('After concatenate')
# os.system('rm {}'.format(os.path.join(path_dir, 'tsdf_values_tmp_*.npy')))
# os.system('rm {}'.format(os.path.join(path_dir, 'color_values_tmp_*.npy')))
vertices, faces, normals, _ = measure.marching_cubes(
tsdf_values_np,
level=0,
allow_degenerate=False,
)
vertices_indices = np.round(vertices).astype(int)
colors = color_values_np[vertices_indices[:, 0], vertices_indices[:, 1], vertices_indices[:, 2]]
# move vertices back to world space
vertices = self.origin.cpu().numpy() + vertices * self.voxel_size
vertices = coord.inv_contract_np(vertices)
trimesh.Trimesh(vertices=vertices,
faces=faces,
normals=normals,
vertex_colors=colors,
).export(path)
@torch.no_grad()
def integrate_tsdf(
self,
c2w,
K,
depth_images,
color_images=None,
):
"""Integrates a batch of depth images into the TSDF.
Args:
c2w: The camera extrinsics.
K: The camera intrinsics.
depth_images: The depth images to integrate.
color_images: The color images to integrate.
"""
batch_size = c2w.shape[0]
shape = self.voxel_coords.shape[1:]
# Project voxel_coords into image space...
image_size = torch.tensor(
[depth_images.shape[-1], depth_images.shape[-2]], device=self.device
) # [width, height]
# make voxel_coords homogeneous
voxel_world_coords = self.voxel_world_coords.expand(batch_size,
*self.voxel_world_coords.shape[1:]) # [batch, 4, N]
voxel_cam_coords = torch.bmm(torch.inverse(c2w), voxel_world_coords) # [batch, 4, N]
# flip the z axis
voxel_cam_coords[:, 2, :] = -voxel_cam_coords[:, 2, :]
# flip the y axis
voxel_cam_coords[:, 1, :] = -voxel_cam_coords[:, 1, :]
# # we need the distance of the point to the camera, not the z coordinate
# # TODO: why is this not the z coordinate?
# voxel_depth = torch.sqrt(torch.sum(voxel_cam_coords[:, :3, :] ** 2, dim=-2, keepdim=True)) # [batch, 1, N]
voxel_cam_coords_z = voxel_cam_coords[:, 2:3, :]
voxel_depth = voxel_cam_coords_z
voxel_cam_points = torch.bmm(K[None].expand(batch_size, -1, -1),
voxel_cam_coords[:, 0:3, :] / voxel_cam_coords_z) # [batch, 3, N]
voxel_pixel_coords = voxel_cam_points[:, :2, :] # [batch, 2, N]
# Sample the depth images with grid sample...
grid = voxel_pixel_coords.permute(0, 2, 1) # [batch, N, 2]
# normalize grid to [-1, 1]
grid = 2.0 * grid / image_size.view(1, 1, 2) - 1.0 # [batch, N, 2]
grid = grid[:, None] # [batch, 1, N, 2]
# depth
sampled_depth = F.grid_sample(
input=depth_images, grid=grid, mode="nearest", padding_mode="zeros", align_corners=False
) # [batch, N, 1]
sampled_depth = sampled_depth.squeeze(2) # [batch, 1, N]
# colors
sampled_colors = None
if color_images is not None:
sampled_colors = F.grid_sample(
input=color_images, grid=grid, mode="nearest", padding_mode="zeros", align_corners=False
) # [batch, N, 3]
sampled_colors = sampled_colors.squeeze(2) # [batch, 3, N]
dist = sampled_depth - voxel_depth # [batch, 1, N]
# x = self.voxel_world_coords[:, :3].permute(0, 2, 1)
# eps = torch.finfo(x.dtype).eps
# x_mag_sq = torch.sum(x ** 2, dim=-1).clamp_min(eps)
# truncation_weight = torch.where(x_mag_sq <= 1, torch.ones_like(x_mag_sq),
# ((2 * torch.sqrt(x_mag_sq) - 1) / x_mag_sq))
# truncation = truncation_weight.reciprocal() * self.truncation
truncation = self.truncation
tsdf_values = torch.clamp(dist / truncation, min=-1.0, max=1.0) # [batch, 1, N]
valid_points = (voxel_depth > 0) & (sampled_depth > 0) & (dist > -self.truncation) # [batch, 1, N]
# Sequentially update the TSDF...
for i in range(batch_size):
valid_points_i = valid_points[i]
valid_points_i_shape = valid_points_i.view(*shape) # [xdim, ydim, zdim]
# the old values
old_tsdf_values_i = self.values[valid_points_i_shape]
old_weights_i = self.weights[valid_points_i_shape]
# the new values
# TODO: let the new weight be configurable
new_tsdf_values_i = tsdf_values[i][valid_points_i]
new_weights_i = 1.0
total_weights = old_weights_i + new_weights_i
self.values[valid_points_i_shape] = (old_tsdf_values_i * old_weights_i +
new_tsdf_values_i * new_weights_i) / total_weights
# self.weights[valid_points_i_shape] = torch.clamp(total_weights, max=1.0)
self.weights[valid_points_i_shape] = total_weights
if sampled_colors is not None:
old_colors_i = self.colors[valid_points_i_shape] # [M, 3]
new_colors_i = sampled_colors[i][:, valid_points_i.squeeze(0)].permute(1, 0) # [M, 3]
self.colors[valid_points_i_shape] = (old_colors_i * old_weights_i[:, None] +
new_colors_i * new_weights_i) / total_weights[:, None]
def main(unused_argv):
config = configs.load_config()
config.compute_visibility = True
config.exp_path = os.path.join("exp", config.exp_name)
config.mesh_path = os.path.join("exp", config.exp_name, "mesh")
config.checkpoint_dir = os.path.join(config.exp_path, 'checkpoints')
os.makedirs(config.mesh_path, exist_ok=True)
# accelerator for DDP
accelerator = accelerate.Accelerator()
device = accelerator.device
# setup logger
logging.basicConfig(
format="%(asctime)s: %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
force=True,
handlers=[logging.StreamHandler(sys.stdout),
logging.FileHandler(os.path.join(config.exp_path, 'log_extract.txt'))],
level=logging.INFO,
)
sys.excepthook = utils.handle_exception
logger = accelerate.logging.get_logger(__name__)
logger.info(config)
logger.info(accelerator.state, main_process_only=False)
config.world_size = accelerator.num_processes
config.global_rank = accelerator.process_index
accelerate.utils.set_seed(config.seed, device_specific=True)
# setup model and optimizer
model = models.Model(config=config)
model = accelerator.prepare(model)
step = checkpoints.restore_checkpoint(config.checkpoint_dir, accelerator, logger)
model.eval()
module = accelerator.unwrap_model(model)
dataset = datasets.load_dataset('train', config.data_dir, config)
dataloader = torch.utils.data.DataLoader(np.arange(len(dataset)),
shuffle=False,
batch_size=1,
collate_fn=dataset.collate_fn,
)
dataiter = iter(dataloader)
if config.rawnerf_mode:
postprocess_fn = dataset.metadata['postprocess_fn']
else:
postprocess_fn = lambda z: z
out_name = f'train_preds_step_{step}'
out_dir = os.path.join(config.mesh_path, out_name)
utils.makedirs(out_dir)
logger.info("Render trainset in {}".format(out_dir))
path_fn = lambda x: os.path.join(out_dir, x)
# Ensure sufficient zero-padding of image indices in output filenames.
zpad = max(3, len(str(dataset.size - 1)))
idx_to_str = lambda idx: str(idx).zfill(zpad)
for idx in range(dataset.size):
# If current image and next image both already exist, skip ahead.
idx_str = idx_to_str(idx)
curr_file = path_fn(f'color_{idx_str}.png')
if utils.file_exists(curr_file):
logger.info(f'Image {idx + 1}/{dataset.size} already exists, skipping')
continue
batch = next(dataiter)
batch = tree_map(lambda x: x.to(accelerator.device) if x is not None else None, batch)
logger.info(f'Evaluating image {idx + 1}/{dataset.size}')
eval_start_time = time.time()
rendering = models.render_image(model, accelerator,
batch, False, 1, config)
logger.info(f'Rendered in {(time.time() - eval_start_time):0.3f}s')
if accelerator.is_main_process: # Only record via host 0.
rendering['rgb'] = postprocess_fn(rendering['rgb'])
rendering = tree_map(lambda x: x.detach().cpu().numpy() if x is not None else None, rendering)
utils.save_img_u8(rendering['rgb'], path_fn(f'color_{idx_str}.png'))
utils.save_img_f32(rendering['distance_mean'],
path_fn(f'distance_mean_{idx_str}.tiff'))
utils.save_img_f32(rendering['distance_median'],
path_fn(f'distance_median_{idx_str}.tiff'))
# if accelerator.is_main_process:
tsdf = TSDF(config, accelerator)
c2w = torch.from_numpy(dataset.camtoworlds[:, :3, :4]).float().to(device)
# make c2w homogeneous
c2w = torch.cat([c2w, torch.zeros(c2w.shape[0], 1, 4, device=device)], dim=1)
c2w[:, 3, 3] = 1
K = torch.from_numpy(dataset.pixtocams).float().to(device).inverse()
logger.info('Reading images')
rgb_files = sorted(glob.glob(path_fn('color_*.png')))
depth_files = sorted(glob.glob(path_fn('distance_median_*.tiff')))
assert len(rgb_files) == len(depth_files)
color_images = []
depth_images = []
for rgb_file, depth_file in zip(tqdm(rgb_files, disable=not accelerator.is_main_process), depth_files):
color_images.append(utils.load_img(rgb_file) / 255)
depth_images.append(utils.load_img(depth_file)[..., None])
color_images = torch.tensor(np.array(color_images), device=device).permute(0, 3, 1, 2) # shape (N, 3, H, W)
depth_images = torch.tensor(np.array(depth_images), device=device).permute(0, 3, 1, 2) # shape (N, 1, H, W)
batch_size = 1
logger.info("Integrating the TSDF")
for i in tqdm(range(0, len(c2w), batch_size), disable=not accelerator.is_main_process):
tsdf.integrate_tsdf(
c2w[i: i + batch_size],
K,
depth_images[i: i + batch_size],
color_images=color_images[i: i + batch_size],
)
logger.info("Saving TSDF Mesh")
tsdf.export_mesh(os.path.join(config.mesh_path, "tsdf_mesh.ply"))
accelerator.wait_for_everyone()
logger.info('Finish extracting mesh using TSDF.')
if __name__ == '__main__':
with gin.config_scope('bake'):
app.run(main)