metadata
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- automatic-speech-recognition
- DewiBrynJones/banc-trawsgrifiadau-bangor-clean-with-ccv
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-xlsr-53-ft-btb-ccv-cy
results: []
wav2vec2-xlsr-53-ft-btb-ccv-cy
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the DEWIBRYNJONES/BANC-TRAWSGRIFIADAU-BANGOR-CLEAN-WITH-CCV - DEFAULT dataset. It achieves the following results on the evaluation set:
- Loss: 0.5324
- Wer: 0.4014
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 600
- training_steps: 10000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
4.7051 | 0.0321 | 500 | 1.7504 | 0.9570 |
1.0409 | 0.0641 | 1000 | 1.1511 | 0.7761 |
0.8183 | 0.0962 | 1500 | 1.0506 | 0.7097 |
0.7091 | 0.1283 | 2000 | 0.9421 | 0.6610 |
0.6547 | 0.1603 | 2500 | 0.8726 | 0.6128 |
0.6088 | 0.1924 | 3000 | 0.8246 | 0.5990 |
0.5781 | 0.2244 | 3500 | 0.8025 | 0.5747 |
0.5429 | 0.2565 | 4000 | 0.7360 | 0.5305 |
0.5104 | 0.2886 | 4500 | 0.7335 | 0.5394 |
0.501 | 0.3206 | 5000 | 0.6933 | 0.5088 |
0.4708 | 0.3527 | 5500 | 0.6770 | 0.5113 |
0.4526 | 0.3848 | 6000 | 0.6609 | 0.4806 |
0.4235 | 0.4168 | 6500 | 0.6373 | 0.4858 |
0.4032 | 0.4489 | 7000 | 0.6048 | 0.4466 |
0.3863 | 0.4810 | 7500 | 0.5946 | 0.4432 |
0.3766 | 0.5130 | 8000 | 0.5737 | 0.4298 |
0.3746 | 0.5451 | 8500 | 0.5668 | 0.4248 |
0.3586 | 0.5771 | 9000 | 0.5485 | 0.4101 |
0.3552 | 0.6092 | 9500 | 0.5378 | 0.4032 |
0.3326 | 0.6413 | 10000 | 0.5324 | 0.4014 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1