|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-large-xlsr-53 |
|
tags: |
|
- automatic-speech-recognition |
|
- DewiBrynJones/banc-trawsgrifiadau-bangor-clean-with-ccv |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: wav2vec2-xlsr-53-ft-btb-ccv-cy |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-xlsr-53-ft-btb-ccv-cy |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the DEWIBRYNJONES/BANC-TRAWSGRIFIADAU-BANGOR-CLEAN-WITH-CCV - DEFAULT dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5324 |
|
- Wer: 0.4014 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 600 |
|
- training_steps: 10000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:-----:|:---------------:|:------:| |
|
| 4.7051 | 0.0321 | 500 | 1.7504 | 0.9570 | |
|
| 1.0409 | 0.0641 | 1000 | 1.1511 | 0.7761 | |
|
| 0.8183 | 0.0962 | 1500 | 1.0506 | 0.7097 | |
|
| 0.7091 | 0.1283 | 2000 | 0.9421 | 0.6610 | |
|
| 0.6547 | 0.1603 | 2500 | 0.8726 | 0.6128 | |
|
| 0.6088 | 0.1924 | 3000 | 0.8246 | 0.5990 | |
|
| 0.5781 | 0.2244 | 3500 | 0.8025 | 0.5747 | |
|
| 0.5429 | 0.2565 | 4000 | 0.7360 | 0.5305 | |
|
| 0.5104 | 0.2886 | 4500 | 0.7335 | 0.5394 | |
|
| 0.501 | 0.3206 | 5000 | 0.6933 | 0.5088 | |
|
| 0.4708 | 0.3527 | 5500 | 0.6770 | 0.5113 | |
|
| 0.4526 | 0.3848 | 6000 | 0.6609 | 0.4806 | |
|
| 0.4235 | 0.4168 | 6500 | 0.6373 | 0.4858 | |
|
| 0.4032 | 0.4489 | 7000 | 0.6048 | 0.4466 | |
|
| 0.3863 | 0.4810 | 7500 | 0.5946 | 0.4432 | |
|
| 0.3766 | 0.5130 | 8000 | 0.5737 | 0.4298 | |
|
| 0.3746 | 0.5451 | 8500 | 0.5668 | 0.4248 | |
|
| 0.3586 | 0.5771 | 9000 | 0.5485 | 0.4101 | |
|
| 0.3552 | 0.6092 | 9500 | 0.5378 | 0.4032 | |
|
| 0.3326 | 0.6413 | 10000 | 0.5324 | 0.4014 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|