|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-large-xlsr-53 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: wav2vec2-xlsr-53-ft-btb-ccv-cy |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-xlsr-53-ft-btb-ccv-cy |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4200 |
|
- Wer: 0.3227 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 2000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:------:| |
|
| No log | 0.1548 | 100 | 3.5623 | 1.0 | |
|
| No log | 0.3096 | 200 | 3.2967 | 1.0 | |
|
| No log | 0.4644 | 300 | 2.6484 | 1.0000 | |
|
| No log | 0.6192 | 400 | 1.0602 | 0.7315 | |
|
| 3.6398 | 0.7740 | 500 | 0.8942 | 0.6696 | |
|
| 3.6398 | 0.9288 | 600 | 0.7116 | 0.5361 | |
|
| 3.6398 | 1.0836 | 700 | 0.6648 | 0.5101 | |
|
| 3.6398 | 1.2384 | 800 | 0.5869 | 0.4528 | |
|
| 3.6398 | 1.3932 | 900 | 0.5698 | 0.4359 | |
|
| 0.5976 | 1.5480 | 1000 | 0.5408 | 0.4112 | |
|
| 0.5976 | 1.7028 | 1100 | 0.5229 | 0.4196 | |
|
| 0.5976 | 1.8576 | 1200 | 0.5055 | 0.3955 | |
|
| 0.5976 | 2.0124 | 1300 | 0.4808 | 0.3709 | |
|
| 0.5976 | 2.1672 | 1400 | 0.4667 | 0.3580 | |
|
| 0.443 | 2.3220 | 1500 | 0.4573 | 0.3582 | |
|
| 0.443 | 2.4768 | 1600 | 0.4475 | 0.3452 | |
|
| 0.443 | 2.6316 | 1700 | 0.4369 | 0.3478 | |
|
| 0.443 | 2.7864 | 1800 | 0.4227 | 0.3298 | |
|
| 0.443 | 2.9412 | 1900 | 0.4169 | 0.3271 | |
|
| 0.3475 | 3.0960 | 2000 | 0.4200 | 0.3227 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|