DewiBrynJones's picture
End of training
739a26b verified
|
raw
history blame
2.12 kB
metadata
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - generated_from_trainer
datasets:
  - DewiBrynJones/oscar-cy-tts
metrics:
  - wer
model-index:
  - name: whisper-large-v3-ft-tts-cy
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: DewiBrynJones/oscar-cy-tts default
          type: DewiBrynJones/oscar-cy-tts
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 0.1561639017527405

whisper-large-v3-ft-tts-cy

This model is a fine-tuned version of openai/whisper-large-v3 on the DewiBrynJones/oscar-cy-tts default dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2108
  • Wer: 0.1562

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3429 0.2627 1000 0.3296 0.2300
0.2636 0.5255 2000 0.2615 0.1926
0.2316 0.7882 3000 0.2340 0.1798
0.1779 1.0510 4000 0.2179 0.1624
0.1626 1.3137 5000 0.2108 0.1562

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1