|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
- rouge |
|
model-index: |
|
- name: mbart-large-50-English_French_Translation_v2 |
|
results: [] |
|
language: |
|
- en |
|
- fr |
|
--- |
|
|
|
# mbart-large-50-English_French_Translation_v2 |
|
|
|
This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3902 |
|
- Bleu: 35.1914 |
|
- Rouge |
|
- Rouge1: 0.641952430267112 |
|
- Rouge2: 0.4572909036472911 |
|
- RougeL: 0.607001331434416 |
|
- RougeLsum: 0.6068905123656807 |
|
- Meteor: 0.5916610499445853 |
|
|
|
## Model description |
|
|
|
This model translates French input text samples to English. |
|
|
|
For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Machine%20Translation/NLP%20Translation%20Project-EN:FR.ipynb |
|
|
|
## Intended uses & limitations |
|
|
|
This model is intended to demonstrate my ability to solve a complex problem using technology. |
|
|
|
## Training and evaluation data |
|
|
|
Dataset Source: https://www.kaggle.com/datasets/hgultekin/paralel-translation-corpus-in-22-languages |
|
|
|
**English Input Text Lengths (in Words)** |
|
![English Input Text Lengths (in Words)](https://raw.githubusercontent.com/DunnBC22/NLP_Projects/main/Machine%20Translation/NLP%20Translation%20Project-EN%20to%20FR/Images/English%20Context%20Length.png) |
|
|
|
**French Input Text Lengths (in Words)** |
|
![French Input Text Lengths (in Words)](https://raw.githubusercontent.com/DunnBC22/NLP_Projects/main/Machine%20Translation/NLP%20Translation%20Project-EN%20to%20FR/Images/French%20Context%20Length.png) |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge1 | Rouge2 | RougeL | RougeLsum | Meteor | |
|
|:-------------:|:-----:|:----:|:---------:|:-------:|:------:|:--------:|:------:|:---------:|:-----:| |
|
| 1.1677 | 1.0 | 750 | 0.3902 | 35.1914 | 0.6419 | 0.4573 | 0.6070 | 0.6069 | 0.5917 | |
|
* All values in the chart above are rounded to the nearest ten-thousandths. |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 1.12.1 |
|
- Datasets 2.9.0 |
|
- Tokenizers 0.12.1 |