cdp_hyl_fd / README.md
G-ML-Hyly's picture
BERT_fd_cdp_hyl
dfa440d verified
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: cdp_hyl_fd
    results: []

cdp_hyl_fd

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4997
  • Accuracy: 0.8235

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7019 1.0 55 1.1939 0.5
0.1305 2.0 110 0.6574 0.7353
0.0242 3.0 165 0.5197 0.8235
0.0081 4.0 220 0.3666 0.8824
0.0051 5.0 275 0.4560 0.8529
0.0035 6.0 330 0.4470 0.8235
0.0026 7.0 385 0.4395 0.8529
0.0022 8.0 440 0.4486 0.8235
0.0018 9.0 495 0.4684 0.8235
0.0015 10.0 550 0.4644 0.8529
0.0013 11.0 605 0.4669 0.8235
0.0012 12.0 660 0.4657 0.8235
0.0011 13.0 715 0.4799 0.8235
0.001 14.0 770 0.4817 0.8235
0.0009 15.0 825 0.4998 0.8235
0.0008 16.0 880 0.4964 0.8235
0.0008 17.0 935 0.5025 0.8235
0.0007 18.0 990 0.4954 0.8235
0.0007 19.0 1045 0.4933 0.8235
0.0007 20.0 1100 0.5014 0.8235
0.0006 21.0 1155 0.4961 0.8235
0.0006 22.0 1210 0.4955 0.8235
0.0006 23.0 1265 0.4984 0.8235
0.0006 24.0 1320 0.4988 0.8235
0.0006 25.0 1375 0.4997 0.8235

Framework versions

  • Transformers 4.36.1
  • Pytorch 2.1.1+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0