GaetanMichelet's picture
End of training
3c72ada verified
|
raw
history blame
3.16 kB
metadata
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
datasets:
  - GaetanMichelet/chat-60_ft_task-2
  - GaetanMichelet/chat-120_ft_task-2
library_name: peft
license: llama3.1
tags:
  - alignment-handbook
  - trl
  - sft
  - generated_from_trainer
model-index:
  - name: Llama-31-8B_task-2_120-samples_config-3
    results: []

Llama-31-8B_task-2_120-samples_config-3

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the GaetanMichelet/chat-60_ft_task-2 and the GaetanMichelet/chat-120_ft_task-2 datasets. It achieves the following results on the evaluation set:

  • Loss: 0.7139

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 150

Training results

Training Loss Epoch Step Validation Loss
1.0459 1.0 11 1.1227
1.0223 2.0 22 1.1149
1.0795 3.0 33 1.1018
0.9982 4.0 44 1.0787
0.9702 5.0 55 1.0444
0.9509 6.0 66 0.9990
0.9573 7.0 77 0.9500
0.8624 8.0 88 0.9071
0.8804 9.0 99 0.8747
0.8515 10.0 110 0.8457
0.7864 11.0 121 0.8208
0.8648 12.0 132 0.8018
0.736 13.0 143 0.7867
0.7882 14.0 154 0.7728
0.7452 15.0 165 0.7604
0.6818 16.0 176 0.7485
0.7119 17.0 187 0.7387
0.7107 18.0 198 0.7307
0.6405 19.0 209 0.7238
0.6075 20.0 220 0.7188
0.6323 21.0 231 0.7152
0.557 22.0 242 0.7139
0.5692 23.0 253 0.7158
0.558 24.0 264 0.7198
0.5153 25.0 275 0.7296
0.4964 26.0 286 0.7367
0.4713 27.0 297 0.7403
0.4144 28.0 308 0.7620
0.4184 29.0 319 0.7954

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1