HachiML's picture
Update README.md
08fb93e
|
raw
history blame
1.71 kB
metadata
library_name: peft
datasets:
  - HachiML/databricks-dolly-15k-ja-for-peft
language:
  - en
  - ja

JGLUE Score

We evaluated our model using the following JGLUE tasks. Here are the scores:

Task Score
JCOMMONSENSEQA(acc) 75.78
JNLI(acc) 50.69
MARC_JA(acc) 79.64
JSQUAD(exact_match) 62.83
Average 67.23

How to use

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, AutoTokenizer
from peft import PeftModel

model_name = "meta-llama/Llama-2-13b-hf"
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.float16,
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
pt_model = AutoModelForCausalLM.from_pretrained(
    model_name,
    quantization_config=bnb_config,
)

peft_name = "HachiML/Llama-2-13b-hf-qlora-dolly-ja-2ep"
model = PeftModel.from_pretrained(
    pt_model,
    peft_name,
)

Training procedure

The following bitsandbytes quantization config was used during training:

  • load_in_8bit: False
  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: True
  • bnb_4bit_compute_dtype: float16

Framework versions

  • PEFT 0.4.0