|
--- |
|
library_name: peft |
|
datasets: |
|
- HachiML/databricks-dolly-15k-ja-for-peft |
|
language: |
|
- en |
|
- ja |
|
--- |
|
## JGLUE Score |
|
We evaluated our model using the following JGLUE tasks. Here are the scores: |
|
| Task | Score | |
|
|---------------------|----------:| |
|
| JCOMMONSENSEQA(acc) | 75.78 | |
|
| JNLI(acc) | 50.69 | |
|
| MARC_JA(acc) | 79.64 | |
|
| JSQUAD(exact_match) | 62.83 | |
|
| **Average** | **67.23** | |
|
- Note: Use v0.3 prompt template |
|
- The JGLUE scores were measured using the following script: |
|
[Stability-AI/lm-evaluation-harness](https://github.com/Stability-AI/lm-evaluation-harness/tree/jp-stable) |
|
|
|
## How to use |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, AutoTokenizer |
|
from peft import PeftModel |
|
|
|
model_name = "meta-llama/Llama-2-13b-hf" |
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.float16, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
pt_model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
quantization_config=bnb_config, |
|
) |
|
|
|
peft_name = "HachiML/Llama-2-13b-hf-qlora-dolly-ja-2ep" |
|
model = PeftModel.from_pretrained( |
|
pt_model, |
|
peft_name, |
|
) |
|
``` |
|
|
|
## Training procedure |
|
|
|
|
|
The following `bitsandbytes` quantization config was used during training: |
|
- load_in_8bit: False |
|
- load_in_4bit: True |
|
- llm_int8_threshold: 6.0 |
|
- llm_int8_skip_modules: None |
|
- llm_int8_enable_fp32_cpu_offload: False |
|
- llm_int8_has_fp16_weight: False |
|
- bnb_4bit_quant_type: nf4 |
|
- bnb_4bit_use_double_quant: True |
|
- bnb_4bit_compute_dtype: float16 |
|
### Framework versions |
|
|
|
|
|
- PEFT 0.4.0 |
|
|