|
--- |
|
license: apache-2.0 |
|
tags: |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- udkai/Turdus |
|
- flemmingmiguel/DareBeagle-7B |
|
--- |
|
## Exl2 version of [Undi95/OpenDolphinMaid-4x7b](https://huggingface.co/Undi95/OpenDolphinMaid-4x7b) |
|
|
|
## branch |
|
main : 8bpw h8 |
|
b8h8 : 8bpw h8 |
|
|
|
Using ThePile [0007.parquet](https://huggingface.co/datasets/EleutherAI/the_pile_deduplicated/resolve/refs%2Fconvert%2Fparquet/default/train/0007.parquet) as dataset |
|
|
|
Quantization settings : ```python convert.py -i models/flemmingmiguel_TurdusDareBeagle-7B -o TurdusDareBeagle-7B-temp -cf TurdusDareBeagle-7B-8bpw-h8-exl2 -c 0007.parquet -l 8192 -b 8 -hb 8 -ml 8192``` |
|
### below this line is original readme |
|
# TurdusDareBeagle-7B |
|
|
|
TurdusDareBeagle-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [udkai/Turdus](https://huggingface.co/udkai/Turdus) |
|
* [flemmingmiguel/DareBeagle-7B](https://huggingface.co/flemmingmiguel/DareBeagle-7B) |
|
|
|
As an experiment to find the best base merge to further fine-tuning, expect a lot of experiments named using parts of the component models until a clear winner emerges in the benchmarks |
|
|
|
In this case . |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
slices: |
|
- sources: |
|
- model: udkai/Turdus |
|
layer_range: [0, 32] |
|
- model: flemmingmiguel/DareBeagle-7B |
|
layer_range: [0, 32] |
|
merge_method: slerp |
|
base_model: flemmingmiguel/DareBeagle-7B |
|
parameters: |
|
t: |
|
- filter: self_attn |
|
value: [0, 0.5, 0.3, 0.7, 1] |
|
- filter: mlp |
|
value: [1, 0.5, 0.7, 0.3, 0] |
|
- value: 0.45 # fallback for rest of tensors |
|
dtype: float16 |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "flemmingmiguel/TurdusDareBeagle-7B" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |