runyakore_whisper / README.md
KitoEver's picture
End of training
ba89106 verified
|
raw
history blame
2.29 kB
metadata
language:
  - nyn
license: apache-2.0
base_model: openai/whisper-small
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - tericlabs
metrics:
  - wer
model-index:
  - name: Whisper Small Runyankore
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Yogera data
          type: tericlabs
        metrics:
          - name: Wer
            type: wer
            value: 47.48073503260225

Whisper Small Runyankore

This model is a fine-tuned version of openai/whisper-small on the Yogera data dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6975
  • Wer: 47.4807

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.7277 0.43 100 2.6880 98.2810
2.265 0.85 200 1.8155 84.8251
1.6872 1.28 300 1.3734 75.1630
1.25 1.7 400 0.9704 65.2638
0.9047 2.13 500 0.8496 57.9727
0.7852 2.55 600 0.7705 57.0836
0.7065 2.98 700 0.7080 51.4523
0.4952 3.4 800 0.6939 50.3853
0.516 3.83 900 0.6786 49.0219
0.4005 4.26 1000 0.6975 47.4807

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0