metadata
license: apache-2.0
language:
- en
tags:
- Phrase Representation
- String Matching
- Fuzzy Join
PEARL-base
Learning High-Quality and General-Purpose Phrase Representations.
Lihu Chen, Gaël Varoquaux, Fabian M. Suchanek.
Accepted by EACL Findings 2024
PEARL-base is finetuned on E5-base,
which can yield better representations for phrases and strings.
If you are computing the semantic similarity of strings, you may need our PEARL model.
It can produce powerful embeddings for various tasks,
such as string matching, entity retrieval, entity clustering and fuzzy join.
Model | Size | Avg | PPDB | PPDB filtered | Turney | BIRD | YAGO | UMLS | CoNLL | BC5CDR | AutoFJ |
---|---|---|---|---|---|---|---|---|---|---|---|
FastText | - | 40.3 | 94.4 | 61.2 | 59.6 | 58.9 | 16.9 | 14.5 | 3.0 | 0.2 | 53.6 |
Sentence-BERT | 110M | 50.1 | 94.6 | 66.8 | 50.4 | 62.6 | 21.6 | 23.6 | 25.5 | 48.4 | 57.2 |
Phrase-BERT | 110M | 54.5 | 96.8 | 68.7 | 57.2 | 68.8 | 23.7 | 26.1 | 35.4 | 59.5 | 66.9 |
E5-small | 34M | 57.0 | 96.0 | 56.8 | 55.9 | 63.1 | 43.3 | 42.0 | 27.6 | 53.7 | 74.8 |
E5-base | 110M | 61.1 | 95.4 | 65.6 | 59.4 | 66.3 | 47.3 | 44.0 | 32.0 | 69.3 | 76.1 |
PEARL-small | 34M | 62.5 | 97.0 | 70.2 | 57.9 | 68.1 | 48.1 | 44.5 | 42.4 | 59.3 | 75.2 |
PEARL-base | 110M | 64.8 | 97.3 | 72.2 | 59.7 | 72.6 | 50.7 | 45.8 | 39.3 | 69.4 | 77.1 |
Usage
Below is an example of entity retrieval, and we reuse the code from E5.
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
def average_pool(last_hidden_states: Tensor,
attention_mask: Tensor) -> Tensor:
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
def encode_text(model, input_texts):
# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
return embeddings
query_texts = ["The New York Times"]
doc_texts = [ "NYTimes", "New York Post", "New York"]
input_texts = query_texts + doc_texts
tokenizer = AutoTokenizer.from_pretrained('Lihuchen/pearl_base')
model = AutoModel.from_pretrained('Lihuchen/pearl_base')
# encode
embeddings = encode_text(model, input_texts)
# calculate similarity
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:1] @ embeddings[1:].T) * 100
print(scores.tolist())
# expected outputs
# [[85.61601257324219, 73.65624237060547, 70.36172485351562]]
Training and Evaluation
Have a look at our code on Github
Citation
If you find our work useful, please give us a citation:
@article{chen2024learning,
title={Learning High-Quality and General-Purpose Phrase Representations},
author={Chen, Lihu and Varoquaux, Ga{\"e}l and Suchanek, Fabian M},
journal={arXiv preprint arXiv:2401.10407},
year={2024}
}