pearl_base / README.md
Lihuchen's picture
Update README.md
c11a9f5 verified
|
raw
history blame
3.36 kB
---
license: apache-2.0
language:
- en
tags:
- Phrase Representation
- String Matching
- Fuzzy Join
---
## PEARL-base
[Learning High-Quality and General-Purpose Phrase Representations](https://arxiv.org/pdf/2401.10407.pdf). <br>
[Lihu Chen](https://chenlihu.com), [Gaël Varoquaux](https://gael-varoquaux.info/), [Fabian M. Suchanek](https://suchanek.name/).
<br> Accepted by EACL Findings 2024
PEARL-base is finetuned on [E5-base](https://huggingface.co/intfloat/e5-base-v2),
which can yield better representations for phrases and strings. <br>
If you are computing the semantic similarity of strings, you may need our PEARL model.<br>
It can produce powerful embeddings for various tasks,
such as string matching, entity retrieval, entity clustering and fuzzy join.
| Model |Size|Avg| PPDB | PPDB filtered |Turney|BIRD|YAGO|UMLS|CoNLL|BC5CDR|AutoFJ|
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| FastText |-| 40.3| 94.4 | 61.2 | 59.6 | 58.9 |16.9|14.5|3.0|0.2| 53.6|
| Sentence-BERT |110M|50.1| 94.6 | 66.8 | 50.4 | 62.6 | 21.6|23.6|25.5|48.4| 57.2|
| Phrase-BERT |110M|54.5| 96.8 | 68.7 | 57.2 | 68.8 |23.7|26.1|35.4| 59.5|66.9|
| E5-small |34M|57.0| 96.0| 56.8|55.9| 63.1|43.3| 42.0|27.6| 53.7|74.8|
|E5-base|110M| 61.1| 95.4|65.6|59.4|66.3| 47.3|44.0|32.0| 69.3|76.1|
|PEARL-small|34M| 62.5| 97.0|70.2|57.9|68.1| 48.1|44.5|42.4|59.3|75.2|
|PEARL-base|110M|64.8|97.3|72.2|59.7|72.6|50.7|45.8|39.3|69.4|77.1|
## Usage
Below is an example of entity retrieval, and we reuse the code from E5.
```python
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
def average_pool(last_hidden_states: Tensor,
attention_mask: Tensor) -> Tensor:
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
def encode_text(model, input_texts):
# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
return embeddings
query_texts = ["The New York Times"]
doc_texts = [ "NYTimes", "New York Post", "New York"]
input_texts = query_texts + doc_texts
tokenizer = AutoTokenizer.from_pretrained('Lihuchen/pearl_base')
model = AutoModel.from_pretrained('Lihuchen/pearl_base')
# encode
embeddings = encode_text(model, input_texts)
# calculate similarity
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:1] @ embeddings[1:].T) * 100
print(scores.tolist())
# expected outputs
# [[85.61601257324219, 73.65624237060547, 70.36172485351562]]
```
## Training and Evaluation
Have a look at our code on [Github](https://github.com/tigerchen52/PEARL)
## Citation
If you find our work useful, please give us a citation:
```
@article{chen2024learning,
title={Learning High-Quality and General-Purpose Phrase Representations},
author={Chen, Lihu and Varoquaux, Ga{\"e}l and Suchanek, Fabian M},
journal={arXiv preprint arXiv:2401.10407},
year={2024}
}
```