language:
- en
license: apache-2.0
datasets:
- Skylion007/openwebtext
- JeanKaddour/minipile
pipeline_tag: text-generation
inference:
parameters:
do_sample: true
temperature: 0.5
top_p: 0.5
top_k: 50
max_new_tokens: 250
repetition_penalty: 1.176
model-index:
- name: TinyMistral-248m
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 22.87
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/TinyMistral-248m
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 28.02
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/TinyMistral-248m
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 23.15
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/TinyMistral-248m
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 42.52
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/TinyMistral-248m
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 49.8
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/TinyMistral-248m
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 0
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/TinyMistral-248m
name: Open LLM Leaderboard
A pre-trained language model, based on the Mistral 7B model, has been scaled down to approximately 248 million parameters. This model has been trained on 7,488,000 examples. This model isn't intended for direct use but for fine-tuning on a downstream task. This model should have a context length of around 32,768 tokens. Safe serialization has been removed due to issues saving model weights.
During evaluation on InstructMix, this model achieved an average perplexity score of 6.3. More epochs are planned for this model on different datasets.
Open LLM Leaderboard Evaluation Results (outdated)
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 24.18 |
ARC (25-shot) | 20.82 |
HellaSwag (10-shot) | 26.98 |
MMLU (5-shot) | 23.11 |
TruthfulQA (0-shot) | 46.89 |
Winogrande (5-shot) | 50.75 |
GSM8K (5-shot) | 0.0 |
DROP (3-shot) | 0.74 |
The purpose of this model is to prove that trillion-scale datasets are not needed to pretrain a language model. As a result of needing small datasets, this model was pretrained on a single GPU (Titan V).
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 27.73 |
AI2 Reasoning Challenge (25-Shot) | 22.87 |
HellaSwag (10-Shot) | 28.02 |
MMLU (5-Shot) | 23.15 |
TruthfulQA (0-shot) | 42.52 |
Winogrande (5-shot) | 49.80 |
GSM8k (5-shot) | 0.00 |