metadata
library_name: transformers
tags:
- audio
- automatic-speech-recognition
license: mit
language:
- ar
ArTST (ASR task)
ArTST model finetuned for automatic speech recognition (speech-to-text) on MGB2.
Model Description
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by: Speech Lab, MBZUAI
- Model type: SpeechT5
- Language: Arabic
- Finetuned from: (ArTST pretrained)[https://github.com/mbzuai-nlp/ArTST]
How to Get Started with the Model
import soundfile as sf
from transformers import (
SpeechT5Config,
SpeechT5FeatureExtractor,
SpeechT5ForSpeechToText,
SpeechT5Processor,
SpeechT5Tokenizer,
)
from custom_tokenizer import CustomTextTokenizer
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = SpeechT5Tokenizer.from_pretrained("mbzuai/artst_asr")
processor = SpeechT5Processor.from_pretrained("mbzuai/artst_asr" , tokenizer=tokenizer)
model = SpeechT5ForSpeechToText.from_pretrained("mbzuai/artst_asr").to(device)
audio, sr = sf.read("audio.wav")
inputs = processor(audio=audio, sampling_rate=sr, return_tensors="pt")
predicted_ids = model.generate(**inputs.to(device), max_length=150)
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
print(transcription[0])
Model Sources [optional]
- Repository: github
- Paper : ArabicNLP2023
Citation [optional]
BibTeX:
@inproceedings{toyin-etal-2023-artst,
title = "{A}r{TST}: {A}rabic Text and Speech Transformer",
author = "Toyin, Hawau and
Djanibekov, Amirbek and
Kulkarni, Ajinkya and
Aldarmaki, Hanan",
booktitle = "Proceedings of ArabicNLP 2023",
month = dec,
year = "2023",
address = "Singapore (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.arabicnlp-1.5",
doi = "10.18653/v1/2023.arabicnlp-1.5",
pages = "41--51",
}