ML4TSP / README.md
heatingma's picture
Update README.md
33c41d0 verified
|
raw
history blame
4.34 kB
metadata
license: apache-2.0

ML4TSP Pretrained Files 2024-02-02

This repository primarily stores the pretrained files for ML4TSP. All the files in this repository have a last update date prior to 2024-02-02.

1. Dataset

1.1 Supervised Learning Training Dataset

File Naming Convention: tsp{nodes_num}_{distribution}_{solver(params)}_{size}.txt

1.2 Test Dataset (Uniform)

File Naming Convention: tsp{nodes_num}_{solver(params)}_{avg_length}.txt

Problem Scale Test Distribution Size
TSP50 tsp50_concorde_5.68759.txt uniform 1280
TSP100 tsp100_concorde_7.75585.txt uniform 1280
TSP500 tsp500_concorde_16.54581.txt uniform 128
TSP1000 tsp1000_concorde_23.11812.txt uniform 128
TSP10000 tsp10000_concorde_large_71.84185.txt uniform 16

2. Model Parameters

2.1 NAR Model Parameters

Pretrained File Net Type Layer Embed Hidden Out Epoch(select)
tsp50_diffusion.pt gnn 12 128 256 2 100(?)
tsp50_dimes.pt gnn 12 128 256 2 405/500step
tsp50_gnn.pt gnn 12 128 256 2 100(96)
tsp50_gnn_wise.pt gnn 12 128 256 2 100(76)
tsp50_gnn4reg.pt gnn 12 128 256 2 100(62)
tsp50_us.pt sag 3 64 64 50 100(3)
tsp100_diffusion.pt gnn 12 128 256 2 50(?)
tsp100_dimes.pt gnn 12 128 256 2 240/250step
tsp100_gnn.pt gnn 12 128 256 2 50(50)
tsp100_gnn_wise.pt gnn 12 128 256 2 50(48)
tsp100_gnn4reg.pt gnn 12 128 256 2 50(18)
tsp100_us.pt sag 3 64 64 50 50(3)
tsp500_diffusion.pt gnn 12 128 256 2 50(?)
tsp500_dimes.pt gnn 12 128 256 2 66/100step
tsp500_gnn.pt gnn 12 128 256 2 50(22)
tsp500_gnn_wise.pt gnn 12 128 256 2 50(14)
tsp1000_diffusion.pt gnn 12 128 256 2 50(?)
tsp1000_gnn_wise.pt gnn 12 128 256 2 50(44)

2.2 AR Model Parameters

Pretrained File Net Type Layer Embed Heads Baseline Epoch(select)
tsp50_am.pt gat 3 128 8 rollout 360(360)
tsp50_pomo.pt gat 3 128 8 shared 360(360)
tsp50_symnco.pt gat 3 128 8 no 360(360)
tsp100_am.pt gat 3 128 8 rollout 500(500)
tsp100_pomo.pt gat 3 128 8 shared 100(100)
tsp100_symnco.pt gat 3 128 8 no 330(329)

3. Training Details

3.1 NAR Model

  • lr_scheduler: "cosine-decay" (torch.optim.lr_scheduler.CosineAnnealingLR)
  • learning-rate: 0.003(initial)
  • optimizer: "AdamW" (torch.optim.AdamW)

3.2 AR Model

  • lr_scheduler: None
  • learning-rate: 0.0001(fix)
  • optimizer: "Adam" (torch.optim.Adam)