metadata
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: plbart-base-finetuned-detection-bad-good-ut
results: []
plbart-base-finetuned-detection-bad-good-ut
This model is a fine-tuned version of uclanlp/plbart-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3264
- Accuracy: 0.826
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6958 | 0.09 | 100 | 0.7097 | 0.532 |
0.6358 | 0.18 | 200 | 0.4519 | 0.759 |
0.4083 | 0.27 | 300 | 0.3793 | 0.789 |
0.3863 | 0.36 | 400 | 0.3827 | 0.797 |
0.3581 | 0.44 | 500 | 0.3392 | 0.81 |
0.3395 | 0.53 | 600 | 0.3546 | 0.8 |
0.3336 | 0.62 | 700 | 0.3297 | 0.827 |
0.353 | 0.71 | 800 | 0.3645 | 0.803 |
0.3628 | 0.8 | 900 | 0.3400 | 0.824 |
0.3227 | 0.89 | 1000 | 0.3264 | 0.826 |
0.3521 | 0.98 | 1100 | 0.3227 | 0.823 |
0.3556 | 1.07 | 1200 | 0.3211 | 0.821 |
0.3243 | 1.16 | 1300 | 0.3296 | 0.812 |
0.3201 | 1.24 | 1400 | 0.3395 | 0.832 |
0.3127 | 1.33 | 1500 | 0.3365 | 0.83 |
0.3267 | 1.42 | 1600 | 0.3376 | 0.828 |
0.3046 | 1.51 | 1700 | 0.3316 | 0.82 |
0.2903 | 1.6 | 1800 | 0.3418 | 0.835 |
0.3062 | 1.69 | 1900 | 0.3300 | 0.84 |
0.3034 | 1.78 | 2000 | 0.3327 | 0.838 |
0.2828 | 1.87 | 2100 | 0.3342 | 0.825 |
0.3119 | 1.96 | 2200 | 0.3319 | 0.833 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.0
- Tokenizers 0.13.2