|
--- |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: tun_wav2vec_final |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# tun_wav2vec_final |
|
|
|
This model was trained from scratch on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3109 |
|
- Wer: 0.5737 |
|
- Cer: 0.1609 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 10 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 80 |
|
- num_epochs: 100 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:| |
|
| 0.2068 | 5.0 | 300 | 0.9499 | 0.6270 | 0.1709 | |
|
| 0.1824 | 10.0 | 600 | 1.1143 | 0.6395 | 0.1740 | |
|
| 0.1519 | 15.0 | 900 | 1.4216 | 0.6520 | 0.1852 | |
|
| 0.1387 | 20.0 | 1200 | 1.1372 | 0.6176 | 0.1632 | |
|
| 0.1221 | 25.0 | 1500 | 1.3203 | 0.6364 | 0.1694 | |
|
| 0.1182 | 30.0 | 1800 | 1.3959 | 0.6270 | 0.1782 | |
|
| 0.099 | 35.0 | 2100 | 1.6996 | 0.6176 | 0.1798 | |
|
| 0.1098 | 40.0 | 2400 | 1.3228 | 0.6113 | 0.1713 | |
|
| 0.0834 | 45.0 | 2700 | 1.2459 | 0.6082 | 0.1582 | |
|
| 0.0801 | 50.0 | 3000 | 1.1573 | 0.5956 | 0.1516 | |
|
| 0.107 | 55.0 | 3300 | 1.2025 | 0.6019 | 0.1640 | |
|
| 0.0954 | 60.0 | 3600 | 1.2703 | 0.5611 | 0.1593 | |
|
| 0.0581 | 65.0 | 3900 | 1.2382 | 0.5768 | 0.1566 | |
|
| 0.0582 | 70.0 | 4200 | 1.1088 | 0.5799 | 0.1566 | |
|
| 0.0434 | 75.0 | 4500 | 1.3048 | 0.5831 | 0.1597 | |
|
| 0.0451 | 80.0 | 4800 | 1.3257 | 0.5768 | 0.1640 | |
|
| 0.0383 | 85.0 | 5100 | 1.3002 | 0.5611 | 0.1532 | |
|
| 0.0384 | 90.0 | 5400 | 1.4335 | 0.5768 | 0.1620 | |
|
| 0.0518 | 95.0 | 5700 | 1.2875 | 0.5737 | 0.1570 | |
|
| 0.0434 | 100.0 | 6000 | 1.3109 | 0.5737 | 0.1609 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|