|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- tiiuae/falcon-refinedweb |
|
- instruction-pretrain/ft-instruction-synthesizer-collection |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
base_model: instruction-pretrain/InstructLM-500M |
|
--- |
|
|
|
# QuantFactory/InstructLM-500M-GGUF |
|
This is quantized version of [instruction-pretrain/InstructLM-500M](https://huggingface.co/instruction-pretrain/InstructLM-500M) created using llama.cpp |
|
|
|
# Model Description |
|
## Instruction Pre-Training: Language Models are Supervised Multitask Learners |
|
This repo contains the **general models pre-trained from scratch** in our paper [Instruction Pre-Training: Language Models are Supervised Multitask Learners](https://huggingface.co/papers/2406.14491). |
|
|
|
We explore supervised multitask pre-training by proposing ***Instruction Pre-Training***, a framework that scalably augments massive raw corpora with instruction-response pairs to pre-train language models. The instruction-response pairs are generated by an efficient instruction synthesizer built on open-source models. In our experiments, we synthesize 200M instruction-response pairs covering 40+ task categories to verify the effectiveness of *Instruction Pre-Training*. Instruction Pre-Training* outperforms *Vanilla Pre-training* in both general pre-training from scratch and domain-adaptive continual pre-training. **In pre-training from scratch, *Instruction Pre-Training* not only improves pre-trained base models but also benefits more from further instruction tuning.** In continual pre-training, *Instruction Pre-Training* enables Llama3-8B to be comparable to or even outperform Llama3-70B. |
|
|
|
<p align='center'> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/66711d2ee12fa6cc5f5dfc89/vRdsFIVQptbNaGiZ18Lih.png" width="400"> |
|
</p> |
|
|
|
## Resources |
|
**🤗 We share our data and models with example usages, feel free to open any issues or discussions! 🤗** |
|
|
|
- Context-Based Instruction Synthesizer: [instruction-synthesizer](https://huggingface.co/instruction-pretrain/instruction-synthesizer) |
|
- Fine-Tuning Data for the Synthesizer: [ft-instruction-synthesizer-collection](https://huggingface.co/datasets/instruction-pretrain/ft-instruction-synthesizer-collection) |
|
- General Models Pre-Trained from Scratch: |
|
- [InstructLM-500M](https://huggingface.co/instruction-pretrain/InstructLM-500M) |
|
- [InstructLM-1.3B](https://huggingface.co/instruction-pretrain/InstructLM-1.3B) |
|
- Domain-Specific Models Pre-Trained from Llama3-8B: |
|
- [Finance-Llama3-8B](https://huggingface.co/instruction-pretrain/finance-Llama3-8B) |
|
- [Biomedicine-Llama3-8B](https://huggingface.co/instruction-pretrain/medicine-Llama3-8B) |
|
|
|
## General Pre-Training From Scratch |
|
We augment the [RefinedWeb corproa](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) with instruction-response pairs generated by our [context-based instruction synthesizer](https://huggingface.co/instruction-pretrain/instruction-synthesizer) to pre-train general langauge models from scratch. |
|
|
|
To evaluate our general base model using the [lm-evaluation-harness framework](https://github.com/EleutherAI/lm-evaluation-harness) |
|
|
|
1. Setup dependencies: |
|
```bash |
|
git clone https://github.com/EleutherAI/lm-evaluation-harness |
|
cd lm-evaluation-harness |
|
pip install -e . |
|
``` |
|
|
|
2. Evalaute: |
|
```bash |
|
MODEL=instruction-pretrain/InstructLM-500M |
|
add_bos_token=True # this flag is needed because lm-eval-harness set add_bos_token to False by default, but ours require add_bos_token to be True |
|
|
|
accelerate launch -m lm_eval --model hf \ |
|
--model_args pretrained=${MODEL},add_bos_token=${add_bos_token},dtype=float16 \ |
|
--gen_kwargs do_sample=False \ |
|
--tasks piqa,hellaswag,winogrande \ |
|
--batch_size auto \ |
|
--num_fewshot 0 |
|
|
|
accelerate launch -m lm_eval --model hf \ |
|
--model_args pretrained=${MODEL},add_bos_token=${add_bos_token},dtype=float16 \ |
|
--gen_kwargs do_sample=False \ |
|
--tasks social_iqa,ai2_arc,openbookqa,boolq,mmlu \ |
|
--batch_size auto \ |
|
--num_fewshot 5 |
|
``` |
|
|
|
## Model Citation |
|
If you find our work helpful, please cite us: |
|
|
|
[AdaptLLM](https://huggingface.co/papers/2309.09530) |
|
```bibtex |
|
@inproceedings{ |
|
cheng2024adapting, |
|
title={Adapting Large Language Models via Reading Comprehension}, |
|
author={Daixuan Cheng and Shaohan Huang and Furu Wei}, |
|
booktitle={The Twelfth International Conference on Learning Representations}, |
|
year={2024}, |
|
url={https://openreview.net/forum?id=y886UXPEZ0} |
|
} |
|
``` |