metadata
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
- generated_from_trainer
model-index:
- name: lilt-en-funsd
results: []
lilt-en-funsd
This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9402
- Answer: {'precision': 0.4992163009404389, 'recall': 0.7796817625458996, 'f1': 0.608695652173913, 'number': 817}
- Header: {'precision': 0.03125, 'recall': 0.008403361344537815, 'f1': 0.013245033112582781, 'number': 119}
- Question: {'precision': 0.625, 'recall': 0.7753017641597029, 'f1': 0.692084542063821, 'number': 1077}
- Overall Precision: 0.5571
- Overall Recall: 0.7317
- Overall F1: 0.6326
- Overall Accuracy: 0.6359
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 25
- mixed_precision_training: Native AMP
Training results
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0