lilt-en-funsd / README.md
RedRawMeat's picture
End of training
2e40517 verified
metadata
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
  - generated_from_trainer
model-index:
  - name: lilt-en-funsd
    results: []

lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9402
  • Answer: {'precision': 0.4992163009404389, 'recall': 0.7796817625458996, 'f1': 0.608695652173913, 'number': 817}
  • Header: {'precision': 0.03125, 'recall': 0.008403361344537815, 'f1': 0.013245033112582781, 'number': 119}
  • Question: {'precision': 0.625, 'recall': 0.7753017641597029, 'f1': 0.692084542063821, 'number': 1077}
  • Overall Precision: 0.5571
  • Overall Recall: 0.7317
  • Overall F1: 0.6326
  • Overall Accuracy: 0.6359

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 25
  • mixed_precision_training: Native AMP

Training results

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0