nyankole_wav2vec2 / README.md
Shawal777's picture
End of training
bc44030 verified
|
raw
history blame
3.2 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: nyankole_wav2vec2
    results: []

nyankole_wav2vec2

This model is a fine-tuned version of facebook/wav2vec2-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.8615
  • Wer: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 150
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.9097 0.9976 210 2.9031 1.0
2.8649 2.0 421 2.8534 1.0
2.8545 2.9976 631 2.8537 1.0
2.8465 4.0 842 2.8554 1.0
2.8509 4.9976 1052 2.8629 1.0
2.8491 6.0 1263 2.8828 1.0
2.8463 6.9976 1473 2.8570 1.0
2.8477 8.0 1684 2.8675 1.0
2.8478 8.9976 1894 2.8605 1.0
2.8411 10.0 2105 2.8593 1.0
2.8493 10.9976 2315 2.8573 1.0
2.8478 12.0 2526 2.8564 1.0
2.8823 12.9976 2736 2.8538 1.0
2.8413 14.0 2947 2.8534 1.0
2.8497 14.9976 3157 2.8487 1.0
2.8439 16.0 3368 2.8642 1.0
2.8442 16.9976 3578 2.8527 1.0
2.8425 18.0 3789 2.8611 1.0
2.841 18.9976 3999 2.8617 1.0
2.8426 20.0 4210 2.8563 1.0
2.8454 20.9976 4420 2.8527 1.0
2.8396 22.0 4631 2.8568 1.0
2.8449 22.9976 4841 2.8503 1.0
2.8424 24.0 5052 2.8596 1.0
2.8438 24.9976 5262 2.8624 1.0
2.8414 26.0 5473 2.8606 1.0
2.8387 26.9976 5683 2.8635 1.0
2.8408 28.0 5894 2.8569 1.0
2.8729 28.9976 6104 2.8640 1.0
2.8417 29.9287 6300 2.8615 1.0

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.1.0+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1