Shijia's picture
End of training
60a5a1e verified
metadata
base_model: yihongLiu/furina
tags:
  - generated_from_trainer
model-index:
  - name: furina_seed42_eng_amh_esp_roman
    results: []

furina_seed42_eng_amh_esp_roman

This model is a fine-tuned version of yihongLiu/furina on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0144
  • Spearman Corr: 0.8461

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Spearman Corr
No log 0.59 200 0.0299 0.6782
No log 1.18 400 0.0251 0.7278
No log 1.76 600 0.0202 0.7493
0.0425 2.35 800 0.0194 0.7584
0.0425 2.94 1000 0.0184 0.7737
0.0425 3.53 1200 0.0189 0.7734
0.0184 4.12 1400 0.0180 0.7906
0.0184 4.71 1600 0.0188 0.7909
0.0184 5.29 1800 0.0171 0.7971
0.0184 5.88 2000 0.0165 0.8055
0.0134 6.47 2200 0.0162 0.8059
0.0134 7.06 2400 0.0164 0.8085
0.0134 7.65 2600 0.0169 0.8131
0.0098 8.24 2800 0.0169 0.8171
0.0098 8.82 3000 0.0158 0.8169
0.0098 9.41 3200 0.0152 0.8201
0.0073 10.0 3400 0.0165 0.8197
0.0073 10.59 3600 0.0150 0.8234
0.0073 11.18 3800 0.0152 0.8284
0.0073 11.76 4000 0.0141 0.8338
0.0059 12.35 4200 0.0144 0.8315
0.0059 12.94 4400 0.0147 0.8348
0.0059 13.53 4600 0.0157 0.8327
0.0049 14.12 4800 0.0147 0.8379
0.0049 14.71 5000 0.0149 0.8365
0.0049 15.29 5200 0.0142 0.8360
0.0049 15.88 5400 0.0140 0.8409
0.0042 16.47 5600 0.0135 0.8414
0.0042 17.06 5800 0.0141 0.8410
0.0042 17.65 6000 0.0144 0.8402
0.0037 18.24 6200 0.0151 0.8435
0.0037 18.82 6400 0.0140 0.8431
0.0037 19.41 6600 0.0140 0.8454
0.0033 20.0 6800 0.0136 0.8453
0.0033 20.59 7000 0.0137 0.8446
0.0033 21.18 7200 0.0144 0.8461

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.1