Shijia's picture
End of training
60a5a1e verified
---
base_model: yihongLiu/furina
tags:
- generated_from_trainer
model-index:
- name: furina_seed42_eng_amh_esp_roman
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# furina_seed42_eng_amh_esp_roman
This model is a fine-tuned version of [yihongLiu/furina](https://huggingface.co/yihongLiu/furina) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0144
- Spearman Corr: 0.8461
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Spearman Corr |
|:-------------:|:-----:|:----:|:---------------:|:-------------:|
| No log | 0.59 | 200 | 0.0299 | 0.6782 |
| No log | 1.18 | 400 | 0.0251 | 0.7278 |
| No log | 1.76 | 600 | 0.0202 | 0.7493 |
| 0.0425 | 2.35 | 800 | 0.0194 | 0.7584 |
| 0.0425 | 2.94 | 1000 | 0.0184 | 0.7737 |
| 0.0425 | 3.53 | 1200 | 0.0189 | 0.7734 |
| 0.0184 | 4.12 | 1400 | 0.0180 | 0.7906 |
| 0.0184 | 4.71 | 1600 | 0.0188 | 0.7909 |
| 0.0184 | 5.29 | 1800 | 0.0171 | 0.7971 |
| 0.0184 | 5.88 | 2000 | 0.0165 | 0.8055 |
| 0.0134 | 6.47 | 2200 | 0.0162 | 0.8059 |
| 0.0134 | 7.06 | 2400 | 0.0164 | 0.8085 |
| 0.0134 | 7.65 | 2600 | 0.0169 | 0.8131 |
| 0.0098 | 8.24 | 2800 | 0.0169 | 0.8171 |
| 0.0098 | 8.82 | 3000 | 0.0158 | 0.8169 |
| 0.0098 | 9.41 | 3200 | 0.0152 | 0.8201 |
| 0.0073 | 10.0 | 3400 | 0.0165 | 0.8197 |
| 0.0073 | 10.59 | 3600 | 0.0150 | 0.8234 |
| 0.0073 | 11.18 | 3800 | 0.0152 | 0.8284 |
| 0.0073 | 11.76 | 4000 | 0.0141 | 0.8338 |
| 0.0059 | 12.35 | 4200 | 0.0144 | 0.8315 |
| 0.0059 | 12.94 | 4400 | 0.0147 | 0.8348 |
| 0.0059 | 13.53 | 4600 | 0.0157 | 0.8327 |
| 0.0049 | 14.12 | 4800 | 0.0147 | 0.8379 |
| 0.0049 | 14.71 | 5000 | 0.0149 | 0.8365 |
| 0.0049 | 15.29 | 5200 | 0.0142 | 0.8360 |
| 0.0049 | 15.88 | 5400 | 0.0140 | 0.8409 |
| 0.0042 | 16.47 | 5600 | 0.0135 | 0.8414 |
| 0.0042 | 17.06 | 5800 | 0.0141 | 0.8410 |
| 0.0042 | 17.65 | 6000 | 0.0144 | 0.8402 |
| 0.0037 | 18.24 | 6200 | 0.0151 | 0.8435 |
| 0.0037 | 18.82 | 6400 | 0.0140 | 0.8431 |
| 0.0037 | 19.41 | 6600 | 0.0140 | 0.8454 |
| 0.0033 | 20.0 | 6800 | 0.0136 | 0.8453 |
| 0.0033 | 20.59 | 7000 | 0.0137 | 0.8446 |
| 0.0033 | 21.18 | 7200 | 0.0144 | 0.8461 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1