|
--- |
|
library_name: diffusers |
|
pipeline_tag: image-to-image |
|
license: apache-2.0 |
|
--- |
|
# Model Card for StableNormal |
|
|
|
This repository contains the weights of StableNormal: Reducing Diffusion Variance for Stable and Sharp Normal |
|
|
|
## Usage |
|
|
|
See the Github repository: https://github.com/Stable-X/StableNormal regarding installation instructions. |
|
|
|
The model can then be used as follows: |
|
|
|
```python |
|
import torch |
|
from PIL import Image |
|
|
|
# Load an image |
|
input_image = Image.open("path/to/your/image.jpg") |
|
|
|
# Create predictor instance |
|
predictor = torch.hub.load("hugoycj/StableNormal", "StableNormal_turbo", trust_repo=True, yoso_version='yoso-normal-v1-5') |
|
|
|
# Generate normal map using alpha channel for masking |
|
normal_map = predictor(rgba_image, data_type="object") # Will mask out background, if alpha channel is avalible, else use birefnet |
|
normal_map = predictor(rgba_image, data_type="outdoor") # Will use Mask2Former to mask out sky and plants |
|
normal_map = predictor(rgba_image, data_type="indoor") # Will not mask out |
|
|
|
# Apply the model to the image |
|
normal_image = predictor(input_image) |
|
|
|
# Save or display the result |
|
normal_image.save("output/normal_map.png") |
|
``` |