metadata
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-invoice
results: []
layoutlmv3-finetuned-invoice
This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2568
- Precision: 0.7955
- Recall: 0.6931
- F1: 0.7407
- Accuracy: 0.9524
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 9.0909 | 100 | 0.8724 | 0.0270 | 0.0099 | 0.0145 | 0.7931 |
No log | 18.1818 | 200 | 0.3880 | 0.4299 | 0.4554 | 0.4423 | 0.9126 |
No log | 27.2727 | 300 | 0.2870 | 0.6 | 0.4158 | 0.4912 | 0.9229 |
No log | 36.3636 | 400 | 0.3227 | 0.6389 | 0.4554 | 0.5318 | 0.9242 |
0.6024 | 45.4545 | 500 | 0.3251 | 0.6092 | 0.5248 | 0.5638 | 0.9280 |
0.6024 | 54.5455 | 600 | 0.2188 | 0.6842 | 0.6436 | 0.6633 | 0.9422 |
0.6024 | 63.6364 | 700 | 0.2146 | 0.7159 | 0.6238 | 0.6667 | 0.9447 |
0.6024 | 72.7273 | 800 | 0.2138 | 0.8202 | 0.7228 | 0.7684 | 0.9563 |
0.6024 | 81.8182 | 900 | 0.2128 | 0.7927 | 0.6436 | 0.7104 | 0.9499 |
0.0428 | 90.9091 | 1000 | 0.2400 | 0.7753 | 0.6832 | 0.7263 | 0.9512 |
0.0428 | 100.0 | 1100 | 0.2498 | 0.7821 | 0.6040 | 0.6816 | 0.9434 |
0.0428 | 109.0909 | 1200 | 0.2614 | 0.7805 | 0.6337 | 0.6995 | 0.9447 |
0.0428 | 118.1818 | 1300 | 0.2742 | 0.7821 | 0.6040 | 0.6816 | 0.9447 |
0.0428 | 127.2727 | 1400 | 0.2744 | 0.7471 | 0.6436 | 0.6915 | 0.9473 |
0.0091 | 136.3636 | 1500 | 0.2568 | 0.7955 | 0.6931 | 0.7407 | 0.9524 |
0.0091 | 145.4545 | 1600 | 0.2711 | 0.7701 | 0.6634 | 0.7128 | 0.9486 |
0.0091 | 154.5455 | 1700 | 0.3043 | 0.7778 | 0.6238 | 0.6923 | 0.9434 |
0.0091 | 163.6364 | 1800 | 0.2746 | 0.7683 | 0.6238 | 0.6885 | 0.9434 |
0.0091 | 172.7273 | 1900 | 0.2646 | 0.7955 | 0.6931 | 0.7407 | 0.9524 |
0.0056 | 181.8182 | 2000 | 0.2681 | 0.7955 | 0.6931 | 0.7407 | 0.9524 |
Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.2.2+cpu
- Datasets 2.19.0
- Tokenizers 0.19.1