gamepollakrit's picture
Update README.md
ed320c1 verified
|
raw
history blame
2.19 kB
metadata
language:
  - th
  - en
license: apache-2.0
library_name: transformers
base_model:
  - Qwen/Qwen2.5-14B-Instruct
  - Qwen/Qwen2.5-14B
pipeline_tag: text-generation
Tsunami Model

Tsunami-1.0-14B-Instruct

TSUNAMI: Transformative Semantic Understanding and Natural Augmentation Model for Intelligence.

TSUNAMI full name was created by ChatGPT.


infomation

Tsunami-1.0-14B-Instruct is Thai Large Language Model that fine-tuned from Qwen2.5-14B in Thai dataset.


Author


Performance Evaluation

Below are the benchmark results of Tsunami-1.0-14B-Instruct compared to similar models in its class:

Model Average Thai Exam M3Exam
Qwen2.5-14B-Instruct 58.45 57.35 59.55
Meta-Llama-3.1-70B-Instruct 59.38 58.23 60.52
llama-3-typhoon-v1.5x-70b-instruct 59.34 58.76 59.92
openthaigpt1.5-14b-instruct 60.41 58.41 62.41
Tsunami-1.0-14B-Instruct 62.05 61.06 63.05

Prompt Template

This model uses ChatML prompt template:

<|im_start|>system
{System}<|im_end|>
<|im_start|>user
{User}<|im_end|>
<|im_start|>assistant
{Assistant}

How to use

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_name = "Tsunami-th/Tsunami-1.0-14B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "สวัสดีครับ"}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
inputs = tokenizer(text, return_tensors="pt")
inputs = inputs.to(model.device)
with torch.no_grad():
   output = model.generate(**inputs, max_new_tokens=512)
response = tokenizer.decode(output[0, len(inputs['input_ids'][0]):], skip_special_tokens=True)