gamepollakrit's picture
Update README.md
ed320c1 verified
|
raw
history blame
2.19 kB
---
language:
- th
- en
license: apache-2.0
library_name: transformers
base_model:
- Qwen/Qwen2.5-14B-Instruct
- Qwen/Qwen2.5-14B
pipeline_tag: text-generation
---
<img src="./Tsunami.webp" alt="Tsunami Model" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
# Tsunami-1.0-14B-Instruct
**TSUNAMI**: Transformative Semantic Understanding and Natural Augmentation Model for Intelligence.
**TSUNAMI** full name was created by ChatGPT.
---
### infomation
**Tsunami-1.0-14B-Instruct** is Thai Large Language Model that fine-tuned from **Qwen2.5-14B** in Thai dataset.
---
### Author
- Pollakrit Lorprasertkul | game.pollakrit@gmail.com
---
### Performance Evaluation
Below are the benchmark results of **Tsunami-1.0-14B-Instruct** compared to similar models in its class:
| Model | Average | Thai Exam | M3Exam |
| --- | --- | --- | --- |
| Qwen2.5-14B-Instruct | 58.45 | 57.35 | 59.55 |
| Meta-Llama-3.1-70B-Instruct | 59.38 | 58.23 | 60.52 |
| llama-3-typhoon-v1.5x-70b-instruct | 59.34 | 58.76 | 59.92 |
| openthaigpt1.5-14b-instruct | 60.41 | 58.41 | 62.41 |
| **Tsunami-1.0-14B-Instruct** | **62.05** | **61.06** | **63.05** |
---
### Prompt Template
This model uses `ChatML` prompt template:
```
<|im_start|>system
{System}<|im_end|>
<|im_start|>user
{User}<|im_end|>
<|im_start|>assistant
{Assistant}
````
---
### How to use
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_name = "Tsunami-th/Tsunami-1.0-14B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "สวัสดีครับ"}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
inputs = tokenizer(text, return_tensors="pt")
inputs = inputs.to(model.device)
with torch.no_grad():
output = model.generate(**inputs, max_new_tokens=512)
response = tokenizer.decode(output[0, len(inputs['input_ids'][0]):], skip_special_tokens=True)
```
---