metadata
license: cc
language:
- en
library_name: transformers
tags:
- social media
- contrastive learning
Contrastive Learning of Sociopragmatic Meaning in Social Media
Chiyu Zhang, Muhammad Abdul-Mageed, Ganesh Jarwaha
Publish at Findings of ACL 2023
Illustration of our proposed InfoDCL framework. We exploit distant/surrogate labels (i.e., emojis) to supervise two contrastive losses, corpus-aware contrastive loss (CCL) and Light label-aware contrastive loss (LCL-LiT). Sequence representations from our model should keep the cluster of each class distinguishable and preserve semantic relationships between classes.Checkpoints of Models Pre-Trained with InfoDCL
Enlish Models:
- InfoDCL-RoBERTa trained with TweetEmoji-EN: https://huggingface.co/UBC-NLP/InfoDCL-emoji
- InfoDCL-RoBERTa trained with TweetHashtag-EN: https://huggingface.co/UBC-NLP/InfoDCL-hashtag
Multilingual Model:
- InfoDCL-XLMR trained with multilingual TweetEmoji-multi: UBC-NLP/InfoDCL-Emoji-XLMR-Base