|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch import nn, optim |
|
from torch.optim.lr_scheduler import ReduceLROnPlateau, CosineAnnealingLR |
|
from transformers import Trainer, TrainingArguments, PreTrainedModel, PretrainedConfig |
|
from datasets import load_dataset, load_metric |
|
from transformers import BertTokenizerFast |
|
from torchvision.transforms import Compose, Resize, ToTensor |
|
import os |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
import logging |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class ZeusModel(PreTrainedModel): |
|
config_class = PretrainedConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.hybrid_embedding = HybridEmbeddingLayer(config.vocab_size, config.embed_dim, config.image_dim, config.audio_dim) |
|
self.quantum_attention = QuantumAttentionLayer(config.embed_dim) |
|
self.dnp_layer = DNP(config.embed_dim, config.embed_dim) |
|
self.recursive_reflection = RecursiveSelfReflectionLayer(config.embed_dim, config.reflection_dim) |
|
self.mohe_layer = MoHELayer(config.embed_dim, config.num_experts) |
|
self.output_layer = nn.Linear(config.embed_dim, config.vocab_size) |
|
self._init_weights() |
|
|
|
def forward(self, text_input, image_input=None, audio_input=None): |
|
x = self.hybrid_embedding(text_input, image_input, audio_input) |
|
attention_output = self.quantum_attention(x) |
|
x = self.dnp_layer(attention_output) |
|
x = self.recursive_reflection(x) |
|
x = self.mohe_layer(x) |
|
output = self.output_layer(x) |
|
return output, attention_output |
|
|
|
def _init_weights(self, module=None): |
|
if module is None: |
|
module = self |
|
if isinstance(module, nn.Linear) or isinstance(module, nn.Embedding): |
|
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range) |
|
if isinstance(module, nn.Linear) and module.bias is not None: |
|
nn.init.zeros_(module.bias) |
|
if isinstance(module, nn.LayerNorm): |
|
nn.init.ones_(module.weight) |
|
nn.init.zeros_(module.bias) |
|
for submodule in module.children(): |
|
self._init_weights(submodule) |
|
|
|
|
|
class ZeusConfig(PretrainedConfig): |
|
def __init__(self, vocab_size=50000, embed_dim=768, image_dim=256, audio_dim=128, reflection_dim=512, num_experts=4, initializer_range=0.02, **kwargs): |
|
super().__init__(**kwargs) |
|
self.vocab_size = vocab_size |
|
self.embed_dim = embed_dim |
|
self.image_dim = image_dim |
|
self.audio_dim = audio_dim |
|
self.reflection_dim = reflection_dim |
|
self.num_experts = num_experts |
|
self.initializer_range = initializer_range |
|
|
|
|
|
class HybridEmbeddingLayer(nn.Module): |
|
def __init__(self, vocab_size, embed_dim, image_dim, audio_dim): |
|
super(HybridEmbeddingLayer, self).__init__() |
|
self.text_embedding = nn.Embedding(vocab_size, embed_dim) |
|
self.image_feature_extractor = nn.Conv2d(3, image_dim, kernel_size=3, stride=2) |
|
self.audio_feature_extractor = nn.Conv1d(1, audio_dim, kernel_size=3, stride=2) |
|
|
|
def forward(self, text_input, image_input=None, audio_input=None): |
|
text_emb = self.text_embedding(text_input) |
|
if image_input is not None: |
|
image_emb = self.image_feature_extractor(image_input) |
|
image_emb = image_emb.view(image_emb.size(0), -1) |
|
if audio_input is not None: |
|
audio_emb = self.audio_feature_extractor(audio_input) |
|
audio_emb = audio_emb.view(audio_emb.size(0), -1) |
|
combined_emb = text_emb + image_emb + audio_emb |
|
return combined_emb |
|
|
|
|
|
class QuantumAttentionLayer(nn.Module): |
|
def __init__(self, embed_dim): |
|
super(QuantumAttentionLayer, self).__init__() |
|
self.attention_weights = nn.Parameter(torch.randn(embed_dim, embed_dim)) |
|
|
|
def forward(self, x): |
|
|
|
attention_probs = F.softmax(torch.matmul(x, self.attention_weights), dim=-1) |
|
attention_output = torch.matmul(attention_probs, x) |
|
return attention_output |
|
|
|
|
|
class DNP(nn.Module): |
|
def __init__(self, input_dim, output_dim): |
|
super(DNP, self).__init__() |
|
self.fc = nn.Linear(input_dim, output_dim) |
|
self.plasticity_weights = nn.Parameter(torch.randn(output_dim)) |
|
|
|
def forward(self, x): |
|
out = self.fc(x) |
|
plasticity_effect = torch.mul(out, self.plasticity_weights) |
|
return out + plasticity_effect |
|
|
|
|
|
class RecursiveSelfReflectionLayer(nn.Module): |
|
def __init__(self, input_dim, reflection_dim): |
|
super(RecursiveSelfReflectionLayer, self).__init__() |
|
self.reflection_layer = nn.Linear(input_dim, reflection_dim) |
|
|
|
def forward(self, x): |
|
reflection_output = F.relu(self.reflection_layer(x)) |
|
self_adjusted_output = x + reflection_output |
|
return self_adjusted_output |
|
|
|
|
|
class MoHELayer(nn.Module): |
|
def __init__(self, embed_dim, num_experts): |
|
super(MoHELayer, self).__init__() |
|
self.experts = nn.ModuleList([nn.Linear(embed_dim, embed_dim) for _ in range(num_experts)]) |
|
self.gate = nn.Linear(embed_dim, num_experts) |
|
|
|
def forward(self, x): |
|
gate_output = F.softmax(self.gate(x), dim=-1) |
|
expert_outputs = torch.stack([expert(x) for expert in self.experts], dim=1) |
|
output = torch.einsum("be,bec->bc", gate_output, expert_outputs) |
|
return output |
|
|
|
|
|
class ZeusModel(nn.Module): |
|
def __init__(self, vocab_size, embed_dim, image_dim, audio_dim, num_heads, reflection_dim, num_experts): |
|
super(ZeusModel, self).__init__() |
|
self.hybrid_embedding = HybridEmbeddingLayer(vocab_size, embed_dim, image_dim, audio_dim) |
|
self.quantum_attention = QuantumAttentionLayer(embed_dim) |
|
self.dnp_layer = DNP(embed_dim, embed_dim) |
|
self.recursive_reflection = RecursiveSelfReflectionLayer(embed_dim, reflection_dim) |
|
self.mohe_layer = MoHELayer(embed_dim, num_experts) |
|
self.output_layer = nn.Linear(embed_dim, vocab_size) |
|
|
|
def forward_with_memory(self, text_input, image_input, audio_input, symbolic_input): |
|
x = self.hybrid_embedding(text_input, image_input, audio_input) |
|
x, memory_state = self.memory_augmented_layer(x, memory_state) |
|
x = self.quantum_attention(x) |
|
x = self.dnp_layer(x) |
|
x = self.recursive_reflection(x) |
|
x = self.mohe_layer(x) |
|
output = self.output_layer(x) |
|
return output |
|
|
|
|
|
vocab_size = 50000 |
|
embed_dim = 768 |
|
image_dim = 256 |
|
audio_dim = 128 |
|
num_heads = 12 |
|
reflection_dim = 512 |
|
num_experts = 4 |
|
|
|
model = ZeusModel(vocab_size, embed_dim, image_dim, audio_dim, num_heads, reflection_dim, num_experts) |
|
|